Skip to main content
Log in

Interannual Variability of Primary Production in the East Siberian Sea

  • MARINE BIOLOGY
  • Published:
Oceanology Aims and scope

Abstract

Interannual variability (2002–2018) of primary production, surface seawater temperature (T0), photosynthetically active radiation (PAR) and ice cover area in the East Siberian Sea (ESS) was studied based on the data of the MODIS-Aqua ocean color scanner. The annual total primary production (PPtot) decreased by 1.7 TgC over 17 years. The multi-year negative trend in PPtot was 0.1 TgC y–1 (1.38% y–1). The decrease in PPtot was accompanied by the decrease in the area-specific primary production (IPP). Over the investigated period the annual mean IPP decreased by 13 mgC m–2 d–1. The multi-year negative trend in IPP was 0.76 mgC m–2 d–1 y–1 (0.84% y–1). The decrease in PPtot and IPP was accompanied by statistically insignificant increase in T0 (R2 = 0.09) and statistically significant decline in PAR (R2 = 0.29). Over the 17 years, T0 in ESS increased by 0.68°С (0.04°С y–1 or 3.2% y–1) and PAR declined by 3.4 Ein m–2 d–1 (0.2 Ein m–2 d–1 y–1 or 1.9% y–1). The ice-free area slightly diminished during the study period (R2 = 0.10) by 64.94×103 km2. The statistically insignificant negative multi-year trend in the ESS ice-free area was 3.82 × 103 km2 y–1 (0.87% y–1). Long-term variability in PPtot in ESS from 2002 to 2018 depended not only on the decrease in the ice cover but also on PAR level and IPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. E. Borodachev and I. V. Borodachev, “Ice in the Laptev Sea in conditions of climate fluctuations in Arctic,” Probl. Arkt. Antarkt. 109 (3), 60–73 (2016).

    Google Scholar 

  2. A. A. Vetrov and E. A. Romankevich, “Primary production and fluxes of organic carbon to the seabed in the Eurasian arctic seas, 2003–2012,” Dokl. Earth Sci. 454, 44–46 (2014).

    Article  Google Scholar 

  3. A. B. Demidov and V. I. Gagarin, “Primary production and associated environmental conditions in the East Siberian Sea in autumn,” Dokl. Earth Sci. 487, 1006–1011 (2019). https://doi.org/10.1134/S1028334X19080257

    Article  Google Scholar 

  4. A. B. Demidov, V. I. Gagarin, E. G. Arashkevich, et al., “Spatial variability of primary production and chlorophyll in the Laptev Sea in August–September,” Oceanology (Engl. Transl.) 59, 678–691 (2019). https://doi.org/10.1134/S0001437019050047.

  5. A. B. Demidov, V. I. Gagarin, and S. V. Sheberstov, “Seasonal variability and estimation of annual East Siberian Sea phytoplankton primary production and comparison with the other Siberian seas”, Oceanology (Engl. Transl.) 60, 603–616 (2020).

  6. A. B. Demidov, S. V. Sheberstov, and V. I. Gagarin, “Estimation of annual Kara Sea primary production,” Oceanology (Engl. Transl.) 58, 369–380 (2018).

  7. A. B. Demidov, S. V. Sheberstov, and V. I. Gagarin, “Interannual variability of primary production in the Laptev Sea,” Oceanology (Engl. Transl.) 60, 50–61 (2020).

  8. A. D. Dobrovol’skii and V. S. Zalogin, The Seas of USSR (Moscow State Univ., Moscow, 1982) [in Russian].

    Google Scholar 

  9. O. A. Kuznetsova, O. V. Kopelevich, S. V. Sheberstov, et al., “Analysis of the chlorophyll concentration in the Kara Sea according to MODIS–AQUA satellite scanner,” Issled. Zemli Kosmosa, No. 5, 21–31 (2013).

    Google Scholar 

  10. S. V. Sheberstov, “The system of package processing of oceanological satellite data,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 12 (6), 154–161 (2015).

    Google Scholar 

  11. K. R. Arrigo and G. L. van Dijken, “Secular trends in Arctic Ocean net primary production,” J. Geophys. Res.: Oceans 116, C09011 (2011). https://doi.org/10.1029/2011JC007151

    Article  Google Scholar 

  12. K. R. Arrigo and G. L. van Dijken, “Continued increases in Arctic Ocean primary production,” Progr. Oceanogr. 136, 60–70 (2015).

    Article  Google Scholar 

  13. J. Aitchison and J. A. C. Brown, “The lognormal distribution,” Econ. J. 67, 713–715 (1957).

    Article  Google Scholar 

  14. D. G. Barber, J. V. Lukovich, Keogak J., et al., “The changing climate of the Arctic,” Arctic 61 (1), 7–26 (2008).

    Google Scholar 

  15. S. Bélanger, M. Babin, and J.-E. Tremblay, “Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding,” Biogeosciences 10 (6), 4087–4101 (2013).

    Article  Google Scholar 

  16. J. Campbell, D. Antoine, R. Armstrong, et al., “Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature and irradiance,” Global Biogeochem. Cycles 16 (3), (2002). https://doi.org/10.1029/2001GB001444

  17. E. Carmack, D. Barber, J. Christensen, et al., “Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves,” Progr. Oceanogr. 71, 145–181 (2006).

    Article  Google Scholar 

  18. D. J. Cavalieri, C. L. Parkinson, P. Gloersen, and H. J. Zwally, Arctic and Antarctic Sea Ice Concentrations from Multichannel Passive-Microwave Satellite Data Sets: October 1978–September 1995: User’s Guide NASA TM 104647 (Goddard Space Flight Center, Greenbelt, 1997).

    Google Scholar 

  19. J. C. Comiso, “The rapid decline of multiyear ice cover,” J. Clim. 25, (2012). https://doi.org/10.1175/JCLI-D11-00113.1

  20. J. C. Comiso and F. Nishio, “Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data,” J. Geophys. Res.: Oceans 113, C02S07 (2008). https://doi.org/10.1029/2007JC0043257

    Article  Google Scholar 

  21. A. B. Demidov, O. V. Kopelevich, S. A. Mosharov, et al., “Modeling Kara Sea phytoplankton primary production: development and skill assessment of regional algorithms,” J. Sea Res. 125, 1–17 (2017).

    Article  Google Scholar 

  22. P. Falkowski, “Light-shade adaptation and assimilation numbers,” J. Plankton Res. 3, 203–216 (1981).

    Article  Google Scholar 

  23. R. Frouin, J. McPherson, K. Ueyoshi, and B. A. Franz, “A time series of photosynthethetically available radiation at the ocean surface from SeaWiFS and MODIS data,” Proc. SPIE 12, (2012). https://doi.org/10.1117/1112.981264

  24. V. J. Hill, P. A. Matrai, E. Olson, et al., “Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates,” Progr. Oceanogr. 110, 107–125 (2013).

    Article  Google Scholar 

  25. Remote Sensing of Ocean Color in Coastal and Other Optical-Complex Waters, Ed. by S. Sathyendranath (International Ocean-Color Coordinating Group, Dartmouth, 2000).

    Google Scholar 

  26. M. Kahru, Z. Lee, B. G. Mitchell, and C. D. Nevison, “Effects of sea ice cover on satellite-detected primary production in the Arctic Ocean,” Biol. Lett. 12, (2016). https://doi.org/10.1098/rsbl.2016.0223

  27. R. Kwok, G. F. Cunningham, M. Wensnahan, et al., “Thinning and volume loss of Arctic sea ice: 2003–2008,” J. Geophys. Res.: Oceans 114, C07005 (2009). https://doi.org/10.1029/2009JC005312

    Article  Google Scholar 

  28. E. Leu, J. E. Søreide, D. O. Hessen, et al., “Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality,” Progr. Oceanogr. 90, 18–32 (2011).

    Article  Google Scholar 

  29. K. M. Lewis, B. G. Mitchell, G. L. van Dijken, and K. R. Arrigo, “Regional chlorophyll a algorithms in the Arctic Ocean and their effect on satellite-derived primary production estimates,” Deep Sea Res., Part II 130, 14–27 (2016).

    Article  Google Scholar 

  30. A. Longhurst, S. Sathyendranath, T. Platt, and C. Caverhill, “An estimate of global primary production in the ocean from satellite radiometer data,” J. Plankton Res. 17 (6), 1245–1271 (1995).

    Article  Google Scholar 

  31. S. Pabi, G. L. van Dijken, and K. R. Arrigo, “Primary production in the Arctic Ocean, 1998–2006,” J. Geophys. Res.: Oceans 113, C08005 (2008). https://doi.org/10.1029/2007/JC004578

    Article  Google Scholar 

  32. V. K. Pavlov, L. A. Timokhov, G. A. Baskakov, et al., Hydrometeorological regime of the Kara, Laptev, and East-Siberian Seas: Technical Memorandum APL-UWTM1-96 (Applied Physics Laboratory University of Washington, Washington, 1996).

  33. D. Petrenko, D. Pozdnyakov, J. Johannessen, et al., “Satellite-derived multi-year trend in primary production in the Arctic Ocean,” Int. J. Remote Sens. 34, 3903–3937 (2013).

    Article  Google Scholar 

  34. S. Pivovarov, R. Schlitzer, and A. Novikhin, “River run-off influence on the water mass formation in the Kara Sea,” in Siberian River Run-Off in the Kara Sea, Ed. by R. Stein, (Elsevier, Amsterdam, 2003), pp. 9–25.

    Google Scholar 

  35. R. W. Reynolds, T. M. Smith, C. Liu, et al., “Daily high-resolution-blended analyses for sea surface temperature,” J. Clim. 20 (22), 5473–5496 (2007).

    Article  Google Scholar 

  36. M. Steele, W. Ermold, and J. Zhang, “Arctic Ocean surface warming trends over the past 100 years,” Geophys. Res. Lett. 35, L02614 (2008). https://doi.org/10.1029/2007GL031651

    Article  Google Scholar 

  37. J. Stroeve, M. Holland, W. Meier, et al., “Arctic sea ice decline: faster than forecast,” Geophys. Res. Lett. 34, L09501 (2007). https://doi.org/10.1029/2007GL029703

    Article  Google Scholar 

  38. J. C. Stroeve, V. Kattsov, A. P. Barrett, et al., “Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations,” Geophys. Res. Lett. 39, L16502 (2012). https://doi.org/10.1029/2012GL052676

    Article  Google Scholar 

  39. J. C. Stroeve, M. C. Serreze, M. M. Holland, et al., “The Arctic’s rapidly shrinking sea ice cover: a research synthesis,” Clim. Change 110, 1005–1027 (2012).

    Article  Google Scholar 

  40. M.-L. Timmermans and C. Ladd, Sea surface temperature, Arctic Report Card: update for 2018. https://arctic. noaa.gov/Report-Card-2018/ArtMID/7878/ArticleID/ 779/Sea-Surface-Temperature.

  41. J.-É. Tremblay, S. Bélanger, D. G. Barber, et al., “Climate forcing multiplies biological productivity in the coastal Arctic Ocean,” Geophys. Res. Lett. 38, L18604 (2011). https://doi.org/10.1029/2011GL048825

  42. J.-É. Tremblay, C. Michel, K. Hobson, et al., “Bloom dynamics in early opening waters of the Arctic Ocean,” Limnol. Oceanogr. 51 (2), 900–912 (2006).

    Article  Google Scholar 

  43. J.-É. Tremblay, D. Robert, D. E. Varela, et al., “Current state and trends in Canadian Arctic marine ecosystems: I. Primary production,” Clim. Change 115, 161–178 (2012).

    Article  Google Scholar 

  44. M. Vancoppenolle, L. Bopp, G. Madec, et al., “Future Arctic Ocean primary productivity from CMIP5 simulations: uncertain outcome, but consistent mechanisms,” Global Biogeochem. Cycle 27, 605–619 (2013). https://doi.org/10.1002/gbc.20055

    Article  Google Scholar 

  45. J. J. Walsh, et al., “A numerical model of seasonal primary production within the Chukchi/Beaufort seas,” Deep Sea Res., Part II 52 (24–26), 3541–3576 (2005).

    Article  Google Scholar 

  46. P. Wassmann, C. M. Duarte, S. Agustí, and M. K. Sejr, “Footprints of climate change in the Arctic marine ecosystem,” Global Change Biol. 17 (2), 1235–1249 (2010). https://doi.org/10.1111/j.1365-2486.2010.02311.x

    Article  Google Scholar 

  47. P. Wassmann, D. Slagstad, and I. Ellingsen, “Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: preliminary results,” Pol. Biol. 33, 1641–1650 (2010).

    Article  Google Scholar 

  48. J. Zhang, Y. H. Spitz, M. Steele, et al., “Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem,” J. Geophys. Res.: Oceans 115, C10015 (2010). https://doi.org/10.1029/2009/JC005387

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to GSFC DAAC (Goddard Space Flight Center, Distributed Active Archive Center), NASA, for the opportunity to use satellite data from the MODIS-Aqua scanner, NODC (National Oceanographic Data Center) NOAA for access to hydrophysical data, and NSIDC (National Snow and Ice Data Center) NOAA for the data on the ice cover area.

Funding

The study was performed within the framework of a state assignment of the Ministry of Science and Higher Education of the Russian Federation (project no. 0149-2019-0008). The field studies and satellite data processing were supported by the Russian Foundation for Basic Research (grant no. 18-05-60069 “Arctic”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Demidov.

Additional information

Translated by N. Ruban

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidov, A.B., Gagarin, V.I. & Sheberstov, S.V. Interannual Variability of Primary Production in the East Siberian Sea. Oceanology 60, 765–777 (2020). https://doi.org/10.1134/S0001437020050033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437020050033

Keywords:

Navigation