Skip to main content
Log in

Grain Size Properties of the Bottom Sediments from Buor-Khaya Bay

  • MARINE GEOLOGY
  • Published:
Oceanology Aims and scope

Abstract

The paper presents the results of grain size analysis of bottom sediments and subsea permafrost from three cores drilled in Buor-Khaya Bay. A pronounced lithologic differentiation of the studied terrigenous deposits were revealed, as well as a wide variety of grain size and genetic types of deposits accumulated in various natural environments. The most of investigated sediments are represented by alluvial sands with wide range of size, pelletizing, and sorting rates. The accumulation of these sands was closely related to the dynamics of riverine flow, slope processes, and coastal erosion and abrasion. The fine sediment fraction is poorly sorted compared to sands. According to the dataset, the predominantly detrital nature of the sedimentary material and its continental origin have been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. Zigert, G. Shtaukhm F. Lemkul’, et al., “Development of glaciation in the Verkhoyansk Range and its foreland during the Pleistocene: results of new investigations,” Reg. Geol. Metallogeniya, Nos. 30–31, 222–228 (2007).

    Google Scholar 

  2. M. V. Kasymskaya, “Submarine taliks of the eastern shelf of the Laptev Sea,” Planeta Zemlya, No. 1 (7), 133–140 (2012).

    Google Scholar 

  3. V. G. Kuznetsov, Lithology. Principles of General (Theoretical) Lithology (Nauchnyi Mir, Moscow, 2011) [in Russian].

    Google Scholar 

  4. V. V. Kunitskii, Cryolitology of the Lower Lena River (Permafrost Institute, Siberian Branch, Academy of Sciences of USSR, Yakutsk, 1989) [in Russian].

  5. L. I. Lobkovskiy, S. L. Nikiforov, N. N. Dmitrevskiy, et al., “Gas extraction and degradation of the submarine permafrost rocks on the Laptev Sea shelf,” Oceanology (Engl. Transl.) 55, 283–290 (2015).

  6. L. I. Lobovsky, S. L. Nikiforov, N. E. Shakhov, et al., “On the degradation mechanisms of underwater permafrost rocks on Russia’s Arctic shelf,” Dokl. Earth Sci. 449, 397–401 (2013).

    Google Scholar 

  7. S. L. Nikiforov, L. I. Lobkovskii, N. N. Dmitrevskii, et al., “Expected geological and geomorphological risks along the Northern Sea Route,” Dokl. Earth Sci. 466, 75–77 (2016).

    Google Scholar 

  8. Yu. A. Pavlidis and S. L. Nikiforov, Morpholithogenesis in the Coastal Zone of the World Ocean (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  9. G. Z. Perl’shtein, D. O. Sergeev, G. S. Tipenko, et al., “Hydrocarbon gases and permafrost zone of the Arctic shelf,” Arktika: Ekol. Ekon. 18 (2), 35–44 (2015).

    Google Scholar 

  10. E. A. Romankevich, A. A. Vetrov, N. A. Belyaev, et al., “Alkanes in Quaternary deposits of the Laptev Sea,” Dokl. Earth Sci. 472, 36–39 (2017).

    Google Scholar 

  11. N. N. Romanovskii, Principles of Cryogenesis of Lithosphere (Moscow State Univ., Moscow, 1993) [in Russian].

    Google Scholar 

  12. N. N. Romanovskii, A. V. Gavrilov, V. E. Tumskoi, et al., “Permafrost zone of the East Siberian Arctic shelf,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 4, 51–56 (2003).

  13. V. N. Sval’nov, Microstructure and Textures of Abyssal Sediments (GEOS, Moscow, 2001) [in Russian].

    Google Scholar 

  14. V. N. Sval’nov and T. N. Alekseeva, Granulometric Composition of Sediments of the World Ocean (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  15. System of the Laptev Sea and the Adjacent Arctic Seas: Modern Environments and History of Development, Ed. by H. Kassens, (Moscow State Univ., Moscow, 2009) [in Russian].

    Google Scholar 

  16. E. A. Slagoda, Permafrost Deposits of Primorskaya Plain of the Laptev Sea: Lithology and Micromorphology (Ekspress, Tyumen, 2004) [in Russian].

    Google Scholar 

  17. A. S. Ulyantsev, N. A. Belyaev, S. Yu. Bratskaya, and E. A. Romankevich, “The molecular composition of lignin as an indicator of subaqueous permafrost thawing,” Dokl. Earth Sci. 482, 1357–1361 (2018).

    Google Scholar 

  18. A. S. Ulyantsev, S. Yu. Bratskaya, E. A. Romankevich, et al., “Particle size composition of Holocene–Pleistocene deposits of the Laptev Sea (Buor-Khaya Bay),” Dokl. Earth Sci. 467, 241–245 (2016).

    Google Scholar 

  19. A. S. Ulyantsev, L. I. Lobkovsky, A. V. Zhavoronkov, and E. A. Romankevich, “The experience from integrated geologic and geochemical studies in the Laptev Sea,” Oceanology (Engl. Transl.) 55, 919–925 (2015).

  20. A. S. Ulyantsev, N. V. Polyakova, E. A. Romankevich, et al., “Ionic composition of pore water in shallow shelf deposits of the Laptev Sea,” Dokl. Earth Sci. 467, 308–313 (2016).

    Google Scholar 

  21. A. S. Ulyantsev, E. A. Romankevich, S. Yu. Bratskaya, et al., “Characteristic of quaternary sedimentation on a shelf of the Laptev Sea according to the molecular composition of n-alkanes,” Dokl. Earth Sci. 473, 449–453 (2017).

    Google Scholar 

  22. A. S. Ulyantsev, E. A. Romankevich, V. I. Peresypkin, et al., “Lignin as an indicator of the sedimentation conditions on the Arctic shelf,” Dokl. Earth Sci. 467, 264–269 (2016).

    Google Scholar 

  23. A. L. Kholodov, B. N. Zolotareva, and L. T. Shirshova, “Organic matter in the main types of frozen Quaternary deposits of the Bykovsky peninsula: total content and group composition of the humus,” Kriosfera Zemli 10 (4), 29–34 (2006).

    Google Scholar 

  24. V. G. Cheverev, I. Yu. Vidyapin, and V. E. Tumskoi, “Composition and characteristics of the thermokarst lagoon deposits of Bykovsky Peninsula,” Kriosfera Zemli 11 (3), 44–50 (2007).

    Google Scholar 

  25. A. N. Charkin, O. V. Dudarev, I. P. Semiletov, et al., “Seasonal and interannual variability of sedimentation and organic matter distribution in the Buor-Khaya Gulf: the primary recipient of input from Lena River and coastal erosion in the southeast Laptev Sea,” Biogeosciences 8, 2581–2594 (2011).

    Google Scholar 

  26. R. L. Folk and W. C. Ward, “Brazos River bar: a study in the significance of grain size parameters,” J. Sediment. Petrol. 27, 3–26 (1957).

    Google Scholar 

  27. F. Günther, P. P. Overduin, A. V. Sandakov, et al., “Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region,” Biogeosciences 10, 4297–4318 (2013).

    Google Scholar 

  28. F. Günther, P. P. Overduin, I. A. Yakshina, et al., “Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction,” Cryosphere 9, 151–178 (2015).

    Google Scholar 

  29. H. W. Hubberten, A. Andreev, V. I. Astakhov, et al., “The periglacial climate and environment in northern Eurasia during the last glaciation,” Quat. Sci. Rev. 23, 1333–1357 (2004).

    Google Scholar 

  30. E. S. Karlsson, A. Charkin, O. Dudarev, et al., “Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea,” Biogeosciences 8, 1865–1879 (2011).

    Google Scholar 

  31. W. C. Krumbein, “Size frequency distributions of sediments,” J. Sediment. Petrol. 4, 65–77 (1934).

    Google Scholar 

  32. V. V. Kunitsky, L. Schirrmeister, G. Grosse, et al., “Snow patches in nival landscapes and their role for the Ice Complex formation in the Laptev Sea coastal lowlands,” Polarforschung 70, 53–67 (2002).

    Google Scholar 

  33. H. Lantuit, D. Atkinson, P. P. Overduin, et al., “Coastal erosion dynamics on the permafrost-dominated Bykovsky Peninsula, north Siberia, 1951–2006,” Polar Res. 30, 7341 (2011).

    Google Scholar 

  34. A. Morgenstern, G. Grosse, F. Günther, et al., “Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta,” Cryosphere 5, 849–867 (2011).

    Google Scholar 

  35. A. Morgenstern, M. Ulrich, F. Günther, et al., “Evolution of thermokarst in East Siberian ice-rich permafrost: a case study,” Geomorphology 201, 363–379 (2013).

    Google Scholar 

  36. Seabed Morphology of the Russian Arctic Shelf, Ed. by S. Nikiforov (Nova Science, New York, 2010).

    Google Scholar 

  37. P. P. Overduin, M. C. Strzelecki, M. N. Grigoriev, et al., “Coastal changes in the Arctic,” in Sedimentary Coastal Zones from High to Low Latitudes: Similarities and Differences, Geological Society of London Special Publication vol. 288, Ed. by I. P. Martini and H. R. Wanless (Geological Society of London, London, 2014), pp. 103–129.

    Google Scholar 

  38. N. N. Romanovskii, H.-W. Hubberten, A. V. Gavrilov, et al., “Permafrost of the east Siberian Arctic shelf and coastal lowlands,” Quat. Sci. Rev. 23, 1359–1369 (2004).

    Google Scholar 

  39. N. N. Romanovskii, H.-W. Hubberten, A. V. Gavrilov, et al., “Thermokarst and land-ocean interactions, Laptev Sea Region, Russia,” Permafrost Periglacial Process. 11, 137–152 (2000).

    Google Scholar 

  40. L. Sanchez-Garcia, J. E. Vonk, A. N. Charkin, et al., “Characterization of three regimes of collapsing Arctic Ice Complex deposits on the SE Laptev Sea coast using biomarkers and dual carbon isotopes,” Permafrost Periglacial Process. 25, 172–183 (2014).

    Google Scholar 

  41. L. Schirrmeister, G. Grosse, G. Schwamborn, et al., “Late Quaternary history of the accumulation plain north of the Chekanovsky Ridge (Lena delta, Russia): a multidisciplinary approach,” Polar Geogr. 27 (4), 277–319 (2003).

    Google Scholar 

  42. L. Schirrmeister, V. Kunitsky, G. Grosse, et al., “Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on north-east Siberian Arctic coastal lowlands and islands—A review,” Quat. Int. 241, 3–25 (2011).

    Google Scholar 

  43. L. Schirrmeister, D. Oezen, and M. A. Geyh, “230Th/U dating of frozen peat, Bol’shoy Lyakhovsky Island (Northern Siberia),” Quat. Res. 57, 253–258 (2002).

    Google Scholar 

  44. L. Schirrmeister, C. Siegert, V. V. Kunitzky, et al., “Late Quaternary ice-rich permafrost sequences as a paleoenvironmental archive for the Laptev Sea Region in northern Siberia,” Int. J. Earth Sci. 91, 154–167 (2002).

    Google Scholar 

  45. L. Schirrmeister, C. Siegert, T. Kuznetsova, et al., “Paleoenvironmental and paleoclimatic records from permafrost deposits in the Arctic region of Northern Siberia,” Quat. Int. 89, 97–118 (2002).

    Google Scholar 

  46. E. A. G. Schuur, J. Bockheim, J. G. Canadell, et al., “Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle,” BioScience 58 (8), 701–714 (2008).

    Google Scholar 

  47. E. A. G. Schuur, A. D. McGuire, C. Schädel, et al., “Climate change and the permafrost carbon feedback,” Nature 520, 171–179 (2015).

    Google Scholar 

  48. I. Semiletov, I. Pipko, Ö. Gustafsson, et al., “Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon,” Nat. Geosci. 9, 361–365 (2016).

    Google Scholar 

  49. I. P. Semiletov, N. E. Shakhova, I. I. Pipko, et al., “Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay of the Laptev Sea,” Biogeosciences 10, 5977–5996 (2013).

    Google Scholar 

  50. N. Shakhova, I. Semiletov, I. Leifer, et al., “Ebullition and storm-induced methane release from the East Siberian Arctic shelf,” Nat. Geosci. 7, 64–70 (2013).

    Google Scholar 

  51. N. Shakhova, I. Semiletov, V. Sergienko, et al., “The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice,” Philos. Trans. R. Soc. A 373 (20140451), (2015).

  52. C. Siegert, L. Schirrmeister, and O. Babiy, “The sedimentological, mineralogical and geochemical composition of Late Pleistocene deposits from the Ice Complex on the Bykovsky Peninsula, Northern Siberia,” Polarforschung 70, 3–11 (2002).

    Google Scholar 

  53. J. Strauss, L. Schirrmeister, S. Wetterich, et al., “Grain-size properties and organic-carbon stock of Yedoma Ice Complex permafrost from the Kolyma lowland, northeastern Siberia,” Global Biogeochem. Cycle 26, GB3003 (2012).

  54. J. I. Svendsen, H. Alexanderson, V. I. Astakhov, et al., “Late Quaternary ice sheet history of northern Eurasia,” Quat. Sci. Rev. 23, 1229–1272 (2004).

    Google Scholar 

  55. C. Tarnocai, J. G. Canadell, E. A. G. Schuur, et al., “Soil organic carbon pools in the northern circumpolar permafrost region,” Global Biogeochem. Cycle 23, GB2023 (2009).

  56. T. Tesi, I. Semiletov, G. Hugelius, et al., “Composition and fate of terrigenous organic matter along the Arctic land–ocean continuum in East Siberia: Insights from biomarkers and carbon isotopes,” Geochim. Cosmochim. Acta 133, 235–256 (2014).

    Google Scholar 

  57. T. Tesi, I. P. Semiletov, O. V. Dudarev, et al., “Matrix association effects on hydrodynamic sorting and degradation of terrestrial organic matter during cross-shelf transport in the Laptev and East Siberian shelf seas,” J. Geophys. Res.: Biogeosci. 121, 1–22 (2016).

    Google Scholar 

  58. J. E. Vonk, I. P. Semiletov, O. V. Dudarev, et al., “Preferential burial of permafrost-derived organic carbon in Siberian-Arctic shelf waters,” J. Geophys. Res.: Oceans 119 (12), 8410–8421 (2014).

    Google Scholar 

  59. S. A. Zimov, E. A. G. Schuur, and S. F. Chapin III, “Permafrost and the global carbon budget,” Science 312, 1612–1613 (2006).

    Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 19-77-10044) within the state task of IO RAS (topic no. 0149-2019-0006). Sample preparation and analysis methods were developed as part of the state task of the Far Eastern Branch of the Russian Academy of Sciences (topic no. 0265-2019-0002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Ulyantsev or S. Yu. Bratskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulyantsev, A.S., Bratskaya, S.Y. & Privar, Y.O. Grain Size Properties of the Bottom Sediments from Buor-Khaya Bay. Oceanology 60, 393–404 (2020). https://doi.org/10.1134/S0001437020030108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437020030108

Keywords:

Navigation