Skip to main content
Log in

Vertical Variability of Primary Production and Features of the Subsurface Chlorophyll Maximum in the Laptev Sea in August–September, 2015, 2017, and 2018

  • MARINE BIOLOGY
  • Published:
Oceanology Aims and scope

Abstract

The vertical distribution of phytoplankton primary production (PP) and chlorophyll a (Chl) was studied based on the data carried out in August–September 2015, 2017, and 2018. The PP maximum was located at the surface or within the 0–5 m subsurface layer. The subsurface chlorophyll maximum (SCM) was recorded at 39% stations on the outer shelf and in the vicinity of the continental slope. The SCM was not detected along the northward transect (130° E) from the Lena River delta. As in other areas of the World Ocean, the SCM was located below the upper mixed layer (UML), in the nitracline, near the boundary of the euphotic zone (1% of photosynthetically active radiation). Generally, the SCM was not accompanied by an additional PP maximum. The Chl concentration at the SCM did not exceed 1 mg m–3. PP produced within the UML and SCM contributed 72 and 23%, respectively, to the integrated primary production (IPP) of the water column. Our results suggest that the influence of the SCM on IPP was insufficient due to low Chl concentration and PP colimitation by the low light and temperature at these depths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. I. Vedernikov, “Specific distribution of primary production and chlorophyll in the Black Sea in spring and summer,” in Variability of the Black Sea Ecosystem: Natural and Anthropogenic Factors, Ed. by M. E. Vinogradov (Nauka, Moscow, 1991), pp. 128–147.

    Google Scholar 

  2. A. B. Demidov, V. I. Gagarin, E. G. Arashkevich, et al., “Spatial variability of primary production and chlorophyll in the Laptev Sea in August–September,” Oceanology (Engl. Transl.) 59, 678–691 (2019).

  3. I. N. Sukhanova, M. V. Flint, E. Ju. Georgieva, et al., “The structure of phytoplankton communities in the eastern part of the Laptev Sea,” Oceanology (Engl. Transl.) 57, 75–90 (2017).

  4. S. H. Ahn, T. Whitledge, D. A. Stockwell, et al., “The biochemical composition of phytoplankton in the Laptev and East Siberian seas during the summer of 2013,” Polar Biol. 42 (1), 133–148 (2019).

    Google Scholar 

  5. M. Ardyna, M. Babin, M. Gosselin, et al., “Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal and annual primary production estimates,” Biogeosciences 10 (3), 1345–1399 (2013).

    Google Scholar 

  6. K. R. Arrigo, P. A. Matrai, and G. L. van Dijken, “Primary productivity in the Arctic Ocean: Impacts of complex optical properties and subsurface chlorophyll maxima on large-scale estimates,” J. Geophys. Res.: Oceans 116, C11022 (2011). https://doi.org/10.1029/2011JC007273

    Article  Google Scholar 

  7. K. R. Arrigo and G. L. van Dijken, “Secular trends in Arctic Ocean net primary production,” J. Geophys. Res.: Oceans 116, C09011 (2011). https://doi.org/10.1029/2011JC007151

    Article  Google Scholar 

  8. M. Babin, S. Bélanger, I. Ellingsen, et al., “Estimating of primary production in the Arctic Ocean using ocean color remote sensing and coupled physical-biological models: strengths, limitations and how they compare,” Progr. Oceanogr. 139, 197–220 (2015).

    Google Scholar 

  9. M. J. Behrenfeld and P. G. Falkowski, “A consumer’s guide to phytoplankton primary productivity models,” Limnol. Oceanogr. 42, 1479–1491 (1997).

    Google Scholar 

  10. P. S. Bhavya, J. H. Lee, H. W. Lee, et al., “First in situ estimations of small phytoplankton carbon and nitrogen uptake rates in the Kara, Laptev and East Siberian seas,” Biogeosciences 15 (18), 5503–5517 (2018).

    Google Scholar 

  11. B. C. Booth, P. Larouche, S. Bélanger, et al., “Dynamics of Chaetoceros socialis in the north water,” Deep Sea Res., Part II 49 (22–23), 5003–5025 (2002).

    Google Scholar 

  12. Z. W. Brown, K. E. Lowry, M. A. Palmer, G. L. van Dijken, M. M. Mills, R. S. Pickart, and K. R. Arrigo, “Characterizing the subsurface chlorophyll a maximum in the Chukchi Sea and Canada Basin,” Deep Sea Res., Part II 118, 88–104 (2015).

    Google Scholar 

  13. J. Campbell, D. Antoine, R. Armstrong, et al., “Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance,” Global Biogeochem. Cycles 16, (2002). https://doi.org/10.1029/2001GB001444

  14. M.-E. Carr, M. A. M. Friedrichs, M. Schmeltz, et al., “A comparison of global estimates of marine primary production from ocean color,” Deep Sea Res., Part II 53, 741–770 (2006).

    Google Scholar 

  15. E. C. Carmack, R. W. Macdonald, and S. Jasper, “Phytoplankton productivity on the Canadian Shelf of the Beaufort Sea,” Mar. Ecol.: Progr. Ser. 277, 37–50 (2004).

    Google Scholar 

  16. A. Cherkasheva, E. M. Nöthig, E. Bauerfeind, C. Melsheimer, and A. Bracher, “From the chlorophyll-a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications,” Ocean Sci. 9, 431–445 (2013).

    Google Scholar 

  17. G. F. Cota, L. R. Pomeroy, W. G. Harrison, et al., “Nutrients, primary production and microbial heterotrophy in the southeastern Chukchi Sea: Arctic summer nutrient depletion and heterotrophy,” Mar. Ecol.: Progr. Ser. 135, 247–258 (1996).

    Google Scholar 

  18. J. J. Cullen, “Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?” Annu. Rev. Mar. Sci. 7, 207–239 (2015).

    Google Scholar 

  19. A. B. Demidov, V. I. Gagarin, O. V. Vorobieva, et al., “Spatial and vertical variability of primary production in the Kara Sea in July and August 2016: the influence of the river plume and subsurface chlorophyll maxima,” Polar Biol. 41 (3), 563–578 (2018).

    Google Scholar 

  20. A. B. Demidov, O. V. Kopelevich, S. A. Mosharov, et al., “Modeling Kara Sea phytoplankton primary production: development and skill assessment of regional algorithms,” J. Sea Res. 125, 1–17 (2017).

    Google Scholar 

  21. A. B. Demidov, S. A. Mosharov, and P. N. Makkaveev, “Patterns of the Kara Sea primary production in autumn: biotic and abiotic forcing of subsurface layer,” J. Mar. Sys. 132, 130–149 (2014).

    Google Scholar 

  22. S. R. Erga, N. Ssebionga, B. Hamre, et al., “Environmental control of phytoplankton distribution and photosynthetic performance at the Jan Mayen Front in the Norwegian Sea,” J. Mar. Sys. 130, 193–205 (2014).

    Google Scholar 

  23. J. Ferland, M. Gosselin, and M. Starr, “Environmental control of summer primary production in the Hudson Bay system: the role of stratification,” J. Mar. Sys. 88, 385–400 (2011).

    Google Scholar 

  24. M. A. M. Friedrichs, M.-E. Carr, R. Barber, et al., “Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean,” J. Mar. Sys. 76, 113–133 (2009).

    Google Scholar 

  25. H. G. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).

    Google Scholar 

  26. H. P. Hansen and F. Koroleff, “Determination of nutrients, in Methods of Seawater Analysis, Ed. by K. Grashoff, (Wiley, Chichester, 1999), pp. 149–228.

    Google Scholar 

  27. A.-S. Heiskanen and A. Keck, “Distribution and sinking rates of phytoplankton, detritus and particulate biogenic silica in the Laptev Sea and Lena River (Arctic Siberia),” Mar. Chem. 53, 229–245 (1996).

    Google Scholar 

  28. V. Hill and G. Cota, “Spatial patterns of primary production on the shelf, slope and basin of the Western Arctic in 2002,” Deep Sea Res., Part II 57 (24–26), 3344–3354 (2005).

    Google Scholar 

  29. V. J. Hill, P. A. Matrai, E. Olson, et al., “Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates,” Progr. Oceanogr. 110, 107–125 (2013).

    Google Scholar 

  30. O. Holm-Hansen, C. J. Lorenzen, R. W. Holmes, and J. D. H. Strickland, “Fluorometric determination of chlorophyll,” J. Cons. Perm. Int. Explor. Mer. 30, 3–15 (1965).

    Google Scholar 

  31. O. Holm-Hansen and B. Riemann, “Chlorophyll a determination: improvements in methodology,” Oikos 30, 438–447 (1978).

    Google Scholar 

  32. H. G. Jerlov, Optical Oceanography (Elsevier, New York, 1968).

    Google Scholar 

  33. M. Jin, C. Deal, S. H. Lee, et al., “Investigation of Arctic sea and ocean primary production for the period 1992–2007 using a 3-D global ice-ocean ecosystem model,” Deep Sea Res., Part II 81–84, 28–35 (2012).

    Google Scholar 

  34. K. V. Juterzenka and K. Knickmeier, “Chlorophyll a distribution in water column and sea ice during the Laptev Sea freeze-up study in autumn 1995,” in Land-Ocean Systems in the Siberian Arctic: Dynamics and History, Ed. by H. Kassens, (Springer, Berlin, 1999), pp. 153–160.

    Google Scholar 

  35. Y. J. Lee, P. A. Matrai, M. A. M. Friedrichs, et al., “An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll-a based models,” J. Geophys. Res.: Oceans 120, (2015). https://doi.org/10.1002/2015/JC11018

  36. W. W. Li, “Photosynthetic response to temperature of marine phytoplankton along a latitudinal gradient (16°N to 74°N),” Deep-Sea Res., Part A 32 (11), 1381–1391 (1985).

    Google Scholar 

  37. S. E. Lohrenz, “Estimation of primary production by the simulated in situ method,” ICES Mar. Sci. Symp. 197, 159–171 (1993).

    Google Scholar 

  38. P. N. Makkaveev, “The total alkalinity in the anoxic waters of the Black sea and in sea-river mixture zones,” in Proceedings of the Joint IOC-JGOFS CO2Advisory Panel Meeting (Intergovernmental Oceanographic Commission, UNESCO, Paris, 1998).

  39. J. Martin, D. Dumont, and J.-E. Tremblay, “Contribution of subsurface chlorophyll maxima to primary production in the coastal Beaufort Sea (Canadian Arctic): a model assessment,” J. Geophys. Res. 118 (11), 5873–6318 (2013).

    Google Scholar 

  40. J. Martin, J.-E. Tremblay, J. Gagnon, et al., “Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters,” Mar. Ecol.: Progr. Ser. 412, 69–84 (2010).

    Google Scholar 

  41. J. Martin, J.-E. Tremblay, and N. M. Price, “Nutritive and photosynthetic ecology of subsurface chlorophyll maxima in Canadian Arctic waters,” Biogeosciences 9 (12), 5353–5371 (2012).

    Google Scholar 

  42. K. I. Martini, P. J. Stabeno, and C. Ladd, “Dependence of subsurface chlorophyll on seasonal water masses in the Chukchi Sea,” J. Geophys. Res.: Oceans 121, 1755–1770 (2016). https://doi.org/10.1002/2015JC011359

    Article  Google Scholar 

  43. F. A. McLaughlin and E. C. Carmack, “Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003–2009,” Geophys. Res. Lett. 37, L24602 (2010). https://doi.org/10.1029/2010GL045459

    Article  Google Scholar 

  44. F. J. Millero, “Thermodynamics of the carbon dioxide system in oceans,” Geochim. Cosmochim. Acta 59 (4), 661–677 (1995).

    Google Scholar 

  45. A. Morel and J.-F. Berthon, “Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications,” Limnol. Oceanogr. 34 (1), 1545–1562 (1989).

    Google Scholar 

  46. S. Pabi, G. L. van Dijken, and K. R. Arrigo, “Primary production in the Arctic Ocean, 1998–2006,” J. Geophys. Res.: Oceans 113, C08005 (2008). https://doi.org/10.1029/2007/JC004578

    Article  Google Scholar 

  47. T. Platt, W. G. Harrison, B. Irwin, et al., “Photosynthesis and photoadaptation of marine phytoplankton in the Arctic,” Deep-Sea Res. 29 (10), 1159–1170 (1982).

    Google Scholar 

  48. T. Platt, S. Sathyendranath, O. Ulloa, et al., “Ocean primary production and available light: further algorithms for remote sensing,” Deep Sea Res., Part I 35, 855–879 (1988).

    Google Scholar 

  49. E. E. Popova, A. Yool, A. C. Coward, et al., “Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model,” Biogeosciences 7 (11), 3569–3591 (2010).

    Google Scholar 

  50. E. E. Popova, A. Yool, A. C. Coward, et al., “What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry,” J. Geophys. Res.: Oceans 117, C00D12 (2012). https://doi.org/10.1029/2011JC007112

    Article  Google Scholar 

  51. J. H. Ryther and C. S. Yentsch, “The estimation of phytoplankton production in the ocean from chlorophyll and light data,” Limnol. Oceanogr. 2, 281–286 (1957).

    Google Scholar 

  52. V. Saba, M. A. M. Friedrichs, D. Antoine, et al., “An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe,” Biogeosciences 8, 489–503 (2011).

    Google Scholar 

  53. V. Saba, S. Marjorie, M. A. M. Friedrichs, et al., “Challenges of modeling depth-integrated marine primary productivity over multiple decades: a case study at BATS and HOT,” Global Biogeochem. Cycles 24, GB3020 (2010). https://doi.org/10.1029/2009GB003655

    Article  Google Scholar 

  54. V. Schourup-Kristensen, C. Wekerle, D. A. Wolf-Gladrow, and C. Völker, “Arctic Ocean biogeochemistry in the high resolution FESOM 1.4-REcoM2 model,” Progr. Oceanogr. 168, 65–81 (2018).

    Google Scholar 

  55. W. O. Smith and W. G. Harrison, “New production in polar regions: the role of environmental controls,” Deep-Sea Res. 38 (12), 1463–1479 (1991).

    Google Scholar 

  56. Yu. I. Sorokin and P. Yu. Sorokin, “Plankton and primary production in the Lena river estuary and in the south-eastern Laptev Sea,” Estuarine, Coastal Shelf Sci. 43, 399–418 (1996).

    Google Scholar 

  57. E. Steemann Nielsen, “The use of radioactive carbon (C14) for measuring organic production in the sea,” J. Cons. Perm. Ins. Explor. Mer. 18, 117–140 (1952).

    Google Scholar 

  58. E. Steemann Nielsen, “Experimental methods for measuring organic production in the sea,” Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer. 144, 38–46 (1958).

    Google Scholar 

  59. N. S. Steiner, T. Sou, C. Deal, et al., “The future of the subsurface chlorophyll-a maximum in the Canada Basin—A model intercomparison,” J. Geophys. Res.: Oceans 121, 387–409 (2015). https://doi.org/10.1002/2015JC011232

    Article  Google Scholar 

  60. M. L. Timmermans, S. Cole, and J. Toole, “Horizontal density structure and restratification of the Arctic Ocean surface layer,” J. Phys. Oceanogr. 42 (4), 659–668 (2012).

    Google Scholar 

  61. J.-É. Tremblay, C. Michel, and K. A. Hobson, “Bloom dynamics in early opening waters of the Arctic Ocean,” Limnol. Oceanogr. 51 (2), 900–912 (2006).

    Google Scholar 

  62. J.-É. Tremblay, K. Simpson, J. Martin, et al., “Vertical stability and the annual dynamics of nutrients and chlorophyll fluorescence in the coastal, southeast Beaufort Sea,” J. Geophys. Res.: Oceans 113, C07S90 (2008). https://doi.org/10.1029/2007JC004547

    Article  Google Scholar 

  63. K. Tuschling, “Phytoplankton ecology in the arctic Laptev Sea—a comparison of three seasons,” Ber. Polarforschung. 347, (2000).

  64. J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: an assessment on surface chlorophyll,” J. Geophys. Res.: Oceans 111, C08005 (2006). https://doi.org/10.1029/2005JC003207

    Article  Google Scholar 

Download references

Funding

This work was performed according to the State assignment of Ministry of Science and Higher Education of Russian Federation (no. 0149-2019-0008). Collection of phytoplankton data was supported by the Russian Foundation of Basic Research, project no. 18-05-60069. Collection of hydrophysical data was supported by the Russian Foundation for Basic Research, project no. 18-05-60302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Demidov.

Additional information

Translated by N. Ruban

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidov, A.B., Gagarin, V.I., Artemiev, V.A. et al. Vertical Variability of Primary Production and Features of the Subsurface Chlorophyll Maximum in the Laptev Sea in August–September, 2015, 2017, and 2018. Oceanology 60, 189–204 (2020). https://doi.org/10.1134/S0001437020010063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437020010063

Keywords:

Navigation