Skip to main content
Log in

Bacteria and Viruses in Arctic Sea Ice

  • MARINE BIOLOGY
  • Published:
Oceanology Aims and scope

Abstract

We studied vertical distribution of bacteria and viruses in different layers of the Arctic sea ice drilled at the North Pole. The sampled multi-year ice was characterized by uneven vertical distribution of bacterial abundance. This characteristic varied within the range of 8 ± 1.2 × 103 to 95 ± 2.6 × 103 cells mL–1. The layers with the maximal bacterial abundance were located in the intermediate and lower layers of the ice cores. Bacterial biomass varied from 0.5 to 5 mg C m–3 with the mean value 1.57 ± 0.2 mg C m–3. The ratio of viral to bacterial abundance varied from 0.6 to 28, with the mean value 12.5. The average total number of phages attached to bacteria was 6.2 × 103 viral particles mL–1. The number of viral particles located within the bacterial cells varied from 2 to 21 particles per a bacterial cell. The frequency of visibly infected bacterial cells (FVIC) calculated for the upper, intermediate and lower layers of the ice was 0.92, 1.23 and 0.8% of the total bacterial abundance, respectively. The overall frequency of infected cells (FIC) calculated for the same layers was 6.3, 8.4 and 0.8% of bacteria numbers, respectively, while the viral-mediated mortality of bacteria (VMB) was 7.1, 9.8 and 6.1%, respectively. Our data show that during the study period the rate of viral infection of bacterial cells and the viral-mediated mortality of bacterial cells in the multy-year ice of the North Pole were relatively low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. I. Kopylov and D. B. Kosolapov, Microbial Loop in Plankton Communities of Marine and Freshwater Ecosystems (KnigoGrad, Izhevsk, 2011) [in Russian].

    Google Scholar 

  2. I. A. Mel’nikov, “Evaluation of modern state and formation of biota of Arctic marine ice according to monitoring results of the area of Northern Pole,” Probl. Ecol. Monit. Model. Ekosist. 28 (1), 83–96 (2017).

    Google Scholar 

  3. N. D. Romanova and A. F. Sazhin, “Relationships between the cell volume and the carbon content of bacteria,” Oceanology (Engl. Transl.) 50, 522–530 (2010).

  4. A. M. Anesio and C. M. Bellas, “Are low temperature habitats hot spots of microbial evolution driven by viruses?” Trends Microbiol. 19 (2), 52–57 (2011).

    Article  Google Scholar 

  5. K. R. Arrigo, D. K. Perovich, et al., “Massive phytoplankton blooms under Arctic sea ice,” Science 336, 1408 (2012).

    Article  Google Scholar 

  6. P. Assmy, J. K. Ehn, M. Fernández-Méndez, et al., “Floating ice-algal aggregates below melting Arctic sea ice,” PLoS One 8, e76599 (2013).

    Article  Google Scholar 

  7. B. Binder, “Reconsidering the relationship between virally induced bacterial mortality and frequency of infected cells,” Aquat. Microb. Ecol. 18, 207–215 (1999).

    Article  Google Scholar 

  8. B. A. Bluhm, K. N. Kosobokova, and E. C. Carmack, “A tale of two basins: An integrated physical and biological perspective of the deep Arctic Ocean,” Prog. Oceanogr. 139, 89–121 (2015).

    Article  Google Scholar 

  9. A. Boetius, S. Albrecht, K. Bakker, et al., “Export of algal biomass from the melting Arctic sea ice,” Science 339, 1430–1432 (2013).

    Article  Google Scholar 

  10. A. Boetius, A. M. Anesio, J. W. Deming, et al., “Microbial ecology of the cryosphere: sea ice and glacial habitats,” Nat. Rev. Microbiol. 13, 677–690 (2015).

    Article  Google Scholar 

  11. J. A. Boras, M. M. Sala, J. M. Arrieta, et al., “Effect of ice melting on bacterial carbon fluxes channeled by viruses and protists in the Arctic Ocean,” Polar Biol. 33, 1695–1707 (2010).

    Article  Google Scholar 

  12. M. Borriss, E. Helmke, R. Hanschke, and T. Schweder, “Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice,” Extremophiles 7, 377–384 (2003).

    Article  Google Scholar 

  13. R. Brinkmeyer, K. Knittel, J. Jürgens, et al., “Diversity and structure of bacterial communities in Arctic versus Antarctic Pack Ice,” Appl. Environ. Microbiol. 69 (11), 6610–6619 (2003).

    Article  Google Scholar 

  14. D. J. Cavalieri and C. L. Parkinson, “Arctic sea ice variability and trends, 1979–2010,” Cryosphere 6, 881–889 (2012).

    Article  Google Scholar 

  15. R. E. Collins, Sh. D. Carpenter, and J. W. Deming, “Spatial heterogeneity and temporal dynamics of particles, bacteria, and pEPS in Arctic winter sea ice,” J. Mar. Syst. 74, 902–917 (2008).

    Article  Google Scholar 

  16. J. C. Comiso, “Large decadal decline of the Arctic multiyear ice cover,” J. Clim. 25, 1176–1193 (2012).

    Article  Google Scholar 

  17. D. Delille, M. Fiala, J. Kuparinen, et al., “Seasonal changes in microbial biomass in the first-year ice of the Terre Adelie area (Antarctica),” Aquat. Microb. Ecol. 28, 257–265 (2002).

    Article  Google Scholar 

  18. J. W. Deming, “Bacteria and viruses,” in Sea Ice, Ed. by Thomas D.N. and Dieckmann G.S. (Wiley-Blackwell, Hoboken, NJ, 2010), Ch. 7, pp. 247–282.

    Google Scholar 

  19. J. W. Deming and H. Eicken, “Planets and life,” in The Emerging Science of Astrobiology, Ed. by W. T. Sullivan and J. A. Baross (Cambridge University Press, Cambridge, 2007), pp. 292–312.

    Google Scholar 

  20. M. Fernández-Méndez, F. Wenzhöfer, I. Peeken, et al., “Composition, buoyancy regulation and fate of ice algal aggregates in the central Arctic Ocean,” PLoS One 9, e107452 (2014).

    Article  Google Scholar 

  21. A. G. Fountain, J. L. Campbell, E. A. G. Schuur, et al., “The disappearing cryosphere: impacts and ecosystem responses to rapid cryosphere loss,” Bioscience 62, 405–415 (2012).

    Article  Google Scholar 

  22. K. A. Hoff, “Total and specific bacterial counts by simultaneous staining with DAPI and flourochrome-labeled antibodies,” in Handbook of Methods in Aquatic Microbial Ecology (CRC Press, Boca Ration, 1993), pp. 149–154.

  23. M. M. Gowing, “Large viruses and infected microeukaryotes in Ross Sea summer pack ice habitats,” Mar. Biol. 142, 1029–1040 (2003).

    Article  Google Scholar 

  24. M. M. Gowing, D. L. Garrison, A. H. Gibson, et al., “Bacterial and viral abundance in Ross Sea summer pack ice communities,” Mar. Ecol.: Prog. Ser. 279, 3–12 (2004).

    Article  Google Scholar 

  25. M. M. Gowing, B. E. Riggs, D. L. Garrison, et al., “Large viruses in Ross Sea late autumn pack ice habitats,” Mar. Ecol.: Prog. Ser. 241, 1–11 (2002).

    Article  Google Scholar 

  26. R. Gradinger and Q. Zhang, “Vertical distribution of bacteria in Arctic sea ice from the Barents and Laptev seas,” Polar Biol. 17, 448–454 (1997).

    Article  Google Scholar 

  27. N. Guixa-Boixereu, D. Vaqué, J. M. Gasol, et al., “Viral distribution and activity in Antarctic waters,” Deep Sea Res., Part II 49, 827–845 (2002).

    Article  Google Scholar 

  28. O. M. Johannessen, E. V. Shalina, and M. Miles, “Satellite evidence for an Arctic sea ice cover in transformation,” Science 286, 1937–1939 (1999).

    Article  Google Scholar 

  29. K. Junge, H. Eicken, and J. W. Deming, “Bacterial activity at –2 to –20°C in Arctic wintertime sea ice,” Appl. Environ. Microbiol. 70 (1), 550–557 (2004).

    Article  Google Scholar 

  30. K. Junge, F. Imhoff, T. Staley, and J. W. Deming, “Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature,” Microb. Ecol. 43 (3), 315–328 (2002).

    Article  Google Scholar 

  31. T. Kaneko, G. Roubal, and R. M. Atlas, “Bacterial populations in the Beaufort Sea,” Nature 270, 596–599 (1977).

    Article  Google Scholar 

  32. S. T. Kottmeier and C. W. Sullivan, “Bacterial biomass and production in pack ice of Antarctic marginal ice edge zones,” Deep-Sea Res. 37 (8), 1311–1330 (1990).

    Article  Google Scholar 

  33. R. Kwok, G. F. Cunningham, M. Wensnahan, et al., “Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008,” J. Geophys. Res.: Oceans 114 (7), 1–16 (2009).

    Article  Google Scholar 

  34. M. van Leeuwe, L. Tedesco, K. R. Arrigo, et al., “Microalgal community structure and primary production in Arctic and Antarctic sea ice: a synthesis,” Elem. Sci. Anthropocene 6 (4) (2018). https://doi.org/10.1525/elementa.267

  35. R. Maranger, F. D. Bird, and S. K. Juniper, “Viral and bacterial dynamics in Arctic sea ice during the spring algal bloom near Resolute, N.W.T., Canada,” Mar. Ecol.: Prog. Ser. 111, 121–127 (1994).

    Article  Google Scholar 

  36. K. Meiners, J. Fehling, M. A. Granskog, and M. Spindler, “Abundance, biomass and composition of biota in Baltic Sea ice and underlying water (March 2000),” Polar Biol. 25 (7), 761–770 (2002).

    Google Scholar 

  37. K. Meiners, R. Gradinger, J. Fehling, et al., “Vertical distribution of exopolymer particles in sea ice of the Fram Strait (Arctic) during autumn,” Mar. Ecol.: Prog. Ser. 248, 1–13 (2003).

    Article  Google Scholar 

  38. S. V. Nghiem, I. G. Rigor, D. K. Perovich, et al., “Rapid reduction of Arctic perennial sea ice,” Geophys. Res. Lett. 34 (19), 34–39 (2007).

    Article  Google Scholar 

  39. I. V. Polyakov, J. E. Walsh, and R. Kwok, “Recent changes of Arctic multiyear sea-ice coverage and the likely causes,” Bull. Am. Meteorol. Soc. 93, 145–151 (2012).

    Article  Google Scholar 

  40. K. G. Porter and Y. S. Feig, “The use of DAPI for identifying and counting aquatic microflora,” Limnol. Oceanogr. 25 (5), 943–948 (1980).

    Article  Google Scholar 

  41. D. A. Rothrock, Y. Yu, and G. A. Maykut, “Thinning of the Arctic sea-ice cover,” Geophys. Res. Lett. 26 (23), 3469–3472 (1999).

    Article  Google Scholar 

  42. G. F. Steward, L. B. Fandino, J. T. Hollibaugh, et al., “Microbial biomass and viral infections of heterotrophic prokaryotes in the sub-surface layer of the Central Arctic Ocean,” Deep Sea Res., Part I 54, 1744–1757 (2007).

    Article  Google Scholar 

  43. F. J. Stewart and C. H. Fritsen, “Bacteria-algae relationships in Antarctic sea ice,” Antarct. Sci. 16 (2), 143–156 (2004).

    Article  Google Scholar 

  44. R. Terrado, C. Lovejoy, R. Massana, and W. F. Vincent, “Microbial food web responses to light and nutrients beneath the coastal Arctic Ocean Sea ice during the winter-spring transition,” J. Mar. Syst. 74, 964–977 (2008).

    Article  Google Scholar 

  45. K. Y. Vinnikov, A. Robok, R. Stouffer, et al., “Global warming and northern hemisphere sea ice extent,” Science 286 (5446), 1934–1937 (1999).

    Article  Google Scholar 

  46. L. E. Wells and J. W. Deming, “Modeled and measured dynamics of viruses in Arctic winter sea ice brines,” Environ. Microbiol. 8, 1115–1121 (2006).

    Article  Google Scholar 

  47. M. G. Weinbauer, “Ecology of prokaryotic viruses,” FEMS Microbiol. Rev. 28 (2), 127–181 (2004).

    Article  Google Scholar 

  48. Y. Z. Zheng, R. Web, P. F. Greenfield, and S. Reid, “Improved method for counting virus and virus like particles,” J. Virol. Methods 62, 153–159 (1996).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.N. Novigatsky, N.A. Belyaev and L. E. Reykhard for providing the ice cores used in the study.

Funding

This study was supported by the Russian Ministry of Education and Science, agreement number 14.616.21.0078 (RFMEFI61617X0078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. F. Sazhin or N. D. Romanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazhin, A.F., Romanova, N.D., Kopylov, A.I. et al. Bacteria and Viruses in Arctic Sea Ice. Oceanology 59, 339–346 (2019). https://doi.org/10.1134/S0001437019030196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437019030196

Navigation