Skip to main content
Log in

Accumulation of Chemical Elements in the Dominant Species of Copepods in the Ob Estuary and the Adjacent Shelf of the Kara Sea

  • Marine Biology
  • Published:
Oceanology Aims and scope

Abstract

Studies were carried out in the Ob River estuary and at the adjacent shelf of the Kara Sea. The concentrations of organic carbon, lipids, major elements (Na, Mg, P, S, K, and Ca), trace elements (Li, Be, B, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Mo, Ag, Cd, Sb, Cs, Ba, Hg, Tl, Pb, Bi, Th, and U), and rare-earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were determined in the dominant species of mesozooplankton (Senecella siberica, Limnocalanus macrurus, and Calanus spp.). The similarities and differences are shown for the chemical compositions of the specimens. Calanus spp. are characterized by a large Li accumulation with concentrations ~350 times higher than those in S. siberica and L. macrurus. The total accumulation of chemical elements per unit volume is higher in L. macrurus than in S. siberica and Calanus spp., amounting to 6.63, 0.69, and 0.41 mg, respectively. The intensity of biological accumulation and the spatial disposition of the area of maximum accumulation of elements in the zooplankton community within the boundaries of the Ob River estuary depend on the hydrophysical conditions. Postmortem variations in the concentrations of chemical elements in dead L. macrurus are characterized by a multidirectional nature. The revealed distinctions of the chemical compositions in live and dead L. macrurus represent the features of lifetime and postmortem concentrations of elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Arashkevich, M. V. Flint, A. B. Nikishina, A. F. Pasternak, A. G. Timonin, J. V. Vasilieva, S. A. Mosharov, and K. A. Soloviev, “The role of zooplankton in the transformation of the organic matter in the Ob estuary, on the shelf, and in the deep regions of the Kara Sea,” Oceanology (Engl. Transl.) 50, 780–792 (2010).

    Google Scholar 

  2. V. I. Vernadskii, Living Matter (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  3. L. L. Demina, Types of Migration of Heavy Metals in the Ocean (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  4. L. L. Demina, “Quantification of the role of organisms in the geochemical migration of trace metals in the ocean,” Geochem. Int. 53, 224–240 (2015).

    Article  Google Scholar 

  5. L. L. Demina, V. V. Gordeev, S. V. Galkin, M. D. Kravchishina, and S. P. Aleksankina, “The biogeochemistry of some heavy metals and metalloids in the Ob River estuary–Kara Sea section,” Oceanology (Engl. Transl.) 50, 729–742 (2010).

    Google Scholar 

  6. L. L. Demina and A. P. Lisitzin, “Role of global biological filters in geochemical migration of trace elements in the ocean: comparative estimation,” Dokl. Earth Sci. 449, 469–473 (2013).

    Article  Google Scholar 

  7. A. V. Drits, A. B. Nikishina, T. N. Semenova, V. M. Sergeeva, K. A. Solovyev, and M. V. Flint, “Spatial distribution and feeding of dominant zooplankton species in the Ob River estuary,” Oceanology (Engl. Transl.) 56, 382–394 (2016).

    Google Scholar 

  8. A. G. Zatsepin, P. O. Zavialov, V. V. Kremenetskiy, S. G. Poyarkov, and D. M. Soloviev, “The upper desalinated layer in the Kara Sea,” Oceanology (Engl. Transl.) 50, 657–667 (2010).

    Google Scholar 

  9. G. A. Leonova and V. A. Bobrov, Geochemical Role of Plankton of Continental Water Bodies in Siberia in Concentration and Biosedimentation of Microelements (Geo, Novosibirsk, 2012) [in Russian].

    Google Scholar 

  10. A. P. Lisitzyn, “Marginal filters and biofilters of the World Ocean,” in Oceanology in the Beginning of 21st Century, Ed. by A. L. Vereshaka (Nauka, Moscow, 2008), pp. 159–224.

    Google Scholar 

  11. N. V. Lobus, “The role of molting in mercury removal from an organism of crayfish Astacus leptodactylus L. after chronic intake with food,” Toksikol. Vestn., No. 4, 22–25 (2009).

    Google Scholar 

  12. N. V. Lobus, “Elemental composition of zooplankton in the Kara Sea and the bays on the eastern side of Novaya Zemlya,” Oceanology (Engl. Transl.) 56, 809–818 (2016).

    Google Scholar 

  13. S. G. Neruchev, Uranium and Life in the History of the Earth (All-Russia Petroleum Research Exploration Institute, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  14. A. F. Pasternak, A. V. Drits, G. A. Abyzova, T. N. Semenova, V. M. Sergeeva, and M. V. Flint, “Feeding and distribution of zooplankton in the desalinated “lens” in the Kara Sea: Impact of the vertical salinity gradient,” Oceanology (Engl. Transl.) 55, 863–870 (2015.

    Google Scholar 

  15. E. A. Romankevich, “Living matter of the Earth: biogeochemical aspects,” Geokhimiya, No. 2, 292–306 (1988).

    Google Scholar 

  16. D. G. Fleishman, Alkaline Elements and Their Radioactive Isotopes in Aquatic Ecosystems (Nauka, Leningrad, 1982) [in Russian].

    Google Scholar 

  17. M. V. Flint, T. N. Semenova, E. G. Arashkevich, I. N. Sukhanova, V. I. Gagarin, V. V. Kremenetskiy, M. A. Pivovarov, and K. A. Soloviev, “Structure of the zooplankton communities in the region of the Ob River’s estuarine frontal zone,” Oceanology (Engl. Transl.) 50, 766–779 (2010).

    Google Scholar 

  18. S. Beier and S. Bertilsson, “Bacterial chitin degradation–mechanisms and ecophysiological strategies,” Front. Microbiol. 4 (149), 149 (2013). doi 10.3389/fmicb.2013.00149

    Google Scholar 

  19. B. Benguella and H. Benaissa, “Effects of competing cations on cadmium biosorption by chitin,” Colloids Surf., A 201 (1), 143–150 (2002).

    Article  Google Scholar 

  20. L. M. Campbell, R. J. Norstrom, K. A. Hobson, et al., “Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay),” Sci. Total Environ. 351, 247–263 (2005).

    Article  Google Scholar 

  21. J. F. Cavaletto, H. A. Vanderploeg, and W. S. Gardner, “Wax esters in two species of freshwater zooplankton,” Limnol. Oceanogr. 34 (4), 785–789 (1989).

    Article  Google Scholar 

  22. C. Y. Chen and C. L. Folt, “High plankton densities reduce mercury biomagnification,” Environ. Sci. Technol. 39 (1), 115–121 (2005).

    Article  Google Scholar 

  23. R. J. Conover and M. Huntley, “Copepods in ice-covered seas–distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas,” J. Mar. Syst. 2, 1–41 (1991).

    Article  Google Scholar 

  24. T. K. Creson, M. L. Woodruff, K. E. Ferslew, et al., “Dose–response effects of chronic lithium regimens on spatial memory in the black molly fish,” Pharmacol. Biochem. Behav. 75 (1), 35–47 (2003).

    Article  Google Scholar 

  25. S. W. Fowler and G. A. Knauer, “Role of large particles in the transport of elements and organic compounds through the oceanic water column,” Progr. Oceanogr. 16 (3), 147–194 (1986).

    Article  Google Scholar 

  26. D. Freese, B. Niehoff, J. E. Søreide, et al., “Seasonal patterns in extracellular ion concentrations and pH of the Arctic copepod Calanus glacialis,” Limnol. Oceanogr. 60 (6), 2121–2129 (2015).

    Article  Google Scholar 

  27. M. Gonzalez-Davila and F. J. Millero, “The adsorption of copper to chitin in seawater,” Geochim. Cosmochim. Acta 54 (3), 761–768 (1990).

    Article  Google Scholar 

  28. M. Gonzalez-Davila, J. M. Santana-Casiano, and F. J. Millero, “The adsorption of Cd (II) and Pb (II) to chitin in seawater,” J. Colloid Interface Sci. 137 (1), 102–110 (1990).

    Article  Google Scholar 

  29. T. Y. Ho, A. Quigg, Z. V. Finkel, et al., “The elemental composition of some marine phytoplankton,” J. Phycol. 36 (6), 1145–1159 (2003).

    Article  Google Scholar 

  30. R. A. Jeffree, F. Carvalho, S. W. Fowler, et al., “Mechanism for enhanced uptake of radionuclides by zooplankton in French Polynesian oligotrophic waters,” Environ. Sci. Technol. 31 (9), 2584–2588 (1997).

    Article  Google Scholar 

  31. K. Kurita, “Chitin and chitosan: functional biopolymers from marine crustaceans,” Mar. Biotechnol. 8 (3), 203–226 (2006).

    Article  Google Scholar 

  32. P. Larsson, L. Okla, and G. Cronberg, “Turnover of polychlorinated biphenyls in an oligotrophic and a eutrophic lake in relation to internal lake processes and atmospheric fallout,” Can. J. Fish. Aquat. Sci. 55 (8), 1926–1937 (1998).

    Article  Google Scholar 

  33. A. Leonard, P. Hantson, and G. B. Gerber, “Mutagenicity, carcinogenicity and teratogenicity of lithium compounds,” Mutat. Res. Rev. Gen. Toxicol. 339 (3), 131–137 (1995).

    Article  Google Scholar 

  34. Y. H. Li and J. E. Shoonmaker, “Chemical composition and mineralogy of marine sediments,” in Treatise on Geochemistry, Vol. 7: Sediments, Diagenesis and Sedimentary Rocks (Pergamon, Oxford, 2003), pp. 1–35.

    Google Scholar 

  35. J. H. Martin, “The possible transport of trace metals via moulted copepod exoskeletons,” Limnol. Oceanogr. 15, 756–761 (1970).

    Article  Google Scholar 

  36. P. Mayzaund and J.-L. M. Martin, “Some aspects of the biochemical and mineral composition of marine plankton,” J. Exp. Mar. Biol. Ecol. 17, 297–310 (1975).

    Article  Google Scholar 

  37. K. Ostgaard, A. Jensen, and A. Johnsson, “Lithium ions lengthen the circadian period of growing cultures of the diatom Skeletonema costatum,” Physiol. Plant 55 (3), 285–288 (1982).

    Article  Google Scholar 

  38. P. C. Pickhardt, C. L. Folt, C. Y. Chen, et al., “Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web,” Sci. Total Environ. 339 (1), 89–101 (2005).

    Article  Google Scholar 

  39. P. S. Rainbow, “Ecophysiology of trace metal uptake in Crustaceans,” Estuarine, Coastal Shelf Sci. 44, 169–175 (1997).

    Article  Google Scholar 

  40. P. S. Rainbow, “Trace metal accumulation in marine invertebrates: marine biology or marine chemistry?,” J.Mar. Biol. Assoc. 77, 195–210 (1997).

    Article  Google Scholar 

  41. P. S. Rainbow, “Trace metal concentrations in aquatic invertebrates: why and so what?,” Environ. Pollut. 120, 497–507 (2002).

    Article  Google Scholar 

  42. J. G. Sanders, “Arsenic cycling in marine systems,” Mar. Environ. Res. 3, 257–266 (1980).

    Article  Google Scholar 

  43. M. Ventura, “Linking biochemical and elemental composition in freshwater and marine crustacean zooplankton,” Mar. Ecol.: Progr. Ser. 327, 233–246 (2006).

    Article  Google Scholar 

  44. W. X. Wang and N. S. Fisher, “Accumulation of trace elements in a marine copepod,” Limnol. Oceanogr. 43 (2), 273–283 (1998).

    Article  Google Scholar 

  45. Zooplankton Methodology Manual (Academic Press Limited, London, 2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Lobus.

Additional information

Original Russian Text © N.V. Lobus, A.V. Drits, M.V. Flint, 2018, published in Okeanologiya, 2018, Vol. 58, No. 3, pp. 431–442.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobus, N.V., Drits, A.V. & Flint, M.V. Accumulation of Chemical Elements in the Dominant Species of Copepods in the Ob Estuary and the Adjacent Shelf of the Kara Sea. Oceanology 58, 405–415 (2018). https://doi.org/10.1134/S0001437018030104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437018030104

Navigation