Skip to main content
Log in

Simulations of Hydrophysical Fields with High Spatial Resolution over the Northwestern Shelf of the Black Sea

  • Marine Physics
  • Published:
Oceanology Aims and scope

Abstract

Two numerical experiments on reconstructing velocity fields, sea level, temperature, and salinity were conducted with account for real atmospheric forcing in autumn 2007 using the Marine Hydrophysical Institute (MHI) hydrodynamic model with an open boundary (northwestern shelf) adjusted to the coastal region of the Black Sea. A high spatial resolution of 500 m and 1.6 km was used, while the bottom topography had a resolution of ~1.6 km. The higher spatial resolution made it possible to reconstruct detailed mesoscale and submesoscale structures of the hydrophysical fields in the upper and deep layers over the northwestern shelf and to obtain quantitative and qualitative characteristics of eddies and jets that are more accurate compared to previous calculations. It was shown that improvement of the spatial resolution up to a few hundred meters makes it possible to take into account the detailed bottom topography and shape of the coastline in the numerical model, which in turn yields a more accurate quantitative and qualitative reconstruction of the mesoscale and submesoscale properties of coastal circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Alaev, Yu. N. Ryabtsev, and N. B. Shapiro, “Adaptive numerical analysis of current velocities in the shelf zone within the framework of a quasiisopycnic model,” Phys. Oceanogr. 11, 379–397 (2001).

    Article  Google Scholar 

  2. D. V. Alekseev, V. A. Ivanov, E. V. Ivancha, V. V. Fomin, and L. V. Cherkesov, “Simulation of the evolution of wave fields induced by a moving cyclone over the northwest shelf of the Black Sea,” Phys. Oceanogr. 15, 37–49 (2005).

    Article  Google Scholar 

  3. A. I. Androsovich, E. N. Mikhailova, and N. B. Shapiro, “Numerical model and calculation of the water circulation in the northwestern Black Sea,” Phys. Oceanogr. 6, 351–364 (1995).

    Article  Google Scholar 

  4. A. S. Blatov, N. P. Bulgakov, and V. A. Ivanov, Variability of Hydrophysical Fields in the Black Sea (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  5. S. N. Bulgakov and V. M. Kushnir, “Peculiarities of the currents field in the north-western part of the Black Sea,” Phys. Oceanogr. 8, 357–368 (1997).

    Article  Google Scholar 

  6. Hydrometeorology and Hydrochemistry of the Seas of Soviet Union, Vol. 4: The Black Sea, No. 1: Hydrometeorological Conditions (Gidrometeoizdat, St. Petersburg, 1991) [in Russian].

  7. S. G. Demyshev, “Energy balance of climatic circulation in the Black Sea, Part 1. Discrete equations of the dynamics of kinetic and potential energies,” Meteorol. Gidrol., No. 9, 65–80 (2004).

    Google Scholar 

  8. S. G. Demyshev, “Energy balance of climatic circulation in the Black Sea, Part 2. Numerical analysis of climate energy,” Meteorol. Gidrol., No. 10, 74–86 (2004).

    Google Scholar 

  9. S. G. Demyshev, “A numerical model of online forecasting Black Sea currents,” Izv., Atmos. Ocean. Phys. 48, 120–132 (2012).

    Article  Google Scholar 

  10. S. G. Demyshev and N. A. Evstigneeva, “Numerical analysis of hydrophysical fields on the northwestern shelf of the Black Sea,” Oceanology (Engl. Transl.) 53, 511–525 (2013).

    Google Scholar 

  11. S. G. Demyshev, V. A. Ivanov, N. V. Markova, et al., “Simulation of the current field in the Black Sea based on eddy-resolving model with assimilation of climatic temperature and salinity fields,” in Ecological Safety of the Coastal and Shelf Zones and Complex Use of Shelf Resources (EKOSI-Gidrofizika, Sevastopol, 2007), No. 15, pp. 215–226.

    Google Scholar 

  12. S. G. Demyshev and G. K. Korotaev, “Numerical energy saving model of baroclinic ocean currents on C grid,” in Numerical Models and Results of Calibration Calculations of Currents in the Atlantic Ocean (Institute of Numerical Mathematics, Moscow, 1992), pp. 163–231.

    Google Scholar 

  13. G. F. Dzhiganshin and A. B. Polonsky, “Kinematic structure and mesoscale variability of the rim current near the coast of Crimea (according to the data of instrumental measurements in September 2008),” Phys. Oceanogr. 21, 23 (2011).

    Article  Google Scholar 

  14. N. A. Diansky, V. V. Fomin, N. V. Zhokhova, and A. N. Korshenko, “Simulations of currents and pollution transport in the coastal waters of Big Sochi,” Izv., Atmos. Ocean. Phys. 49, 611–621 (2013).

    Article  Google Scholar 

  15. V. M. Zhurbas, A. G. Zatsepin, Yu. V. Grigor’eva, V. N. Eremeev, V. V. Kremenetsky, S. V. Motyzhev, S. G. Poyarkov, P.-M. Poulain, S. V. Stanichny, and D. M. Soloviev, “Water circulation and characteristics of currents of different scales in the upper layer of the Black Sea from drifter data,” Oceanology (Engl. Transl.) 44, 30–43 (2004).

    Google Scholar 

  16. V. N. Zyryanov, Topographic Eddies in the Sea Currents (Institute of Water Problems, Russian Academy of Sciences, 1995) [in Russian].

    Google Scholar 

  17. R. A. Ibrayev, R. N. Khabeev, and K. V. Ushakov, “Eddy-resolving 1/10° model of the World Ocean,” Izv., Atmos. Ocean. Phys. 48, 37–46 (2012).

    Article  Google Scholar 

  18. V. A. Ivanov and V. N. Belokopytov, Oceanography of the Black Sea (EKOSI-Gidrofizika, Sevastopol, 2011) [in Russian].

    Google Scholar 

  19. V. A. Ivanov, A. I. Kubryakov, E. N. Mikhailova, et al., “Development and evolution of eddies caused by river run-off on the northeastern shelf of the Black Sea,” in Analysis of the Shelf Zone of Azov-Black Sea Basin (EKOSI-Gidrofizika, Sevastopol, 1995), pp. 147–167.

    Google Scholar 

  20. V. A. Ivanov, E. N. Mikhailova, and N. B. Shapiro, “Modeling of wind upwellings on the northwest shelf of the Black Sea near local features of the bottom topography,” Phys. Oceanogr. 18, 168–178 (2008).

    Article  Google Scholar 

  21. S. S. Karimova, “Statistical analysis of submesoscale eddies in the Baltic, Black, and Caspian seas according to satellite surveys,” Issled. Zemli Kosmosa, No. 3, 31–47 (2012).

    Google Scholar 

  22. V. F. Kozlov and M. A. Sokolovskii, “Stationary transfer of stratified liquid over uneven bottom,” Okeanologiya (Moscow) 18 (4), 581–585 (1978).

    Google Scholar 

  23. G. K. Korotaev, T. Oguz, A. A. Nikiforov, et al., “Dynamics of anticyclones in the Black Sea according to satellite measurements,” Issled. Zemli Kosmosa, No. 6, 1–10 (2002).

    Google Scholar 

  24. A. G. Kostyanoi, A. I. Ginzburg, N. A. Sheremet, et al., “Small-scale eddies in the Black Sea,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 7 (1), 248–259 (2010).

    Google Scholar 

  25. A. I. Peredei and A. S. Sarkisyan, “Particular solutions of some conversed equations of the current dynamics in the seas,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 8 (10), 1073–1079 (1972).

    Google Scholar 

  26. Yu. B. Ratner, M. V. Martynov, T. M. Bayankina, et al., “Information flows in operative monitoring of hydrophysical fields of the Black Sea and their automated processing,” Proceedings of International Scientific-Technical Conference “Envirnomental Control Systems” (EKOSI-Gidrofizika, Sevastopol, 2005), pp. 140–149.

    Google Scholar 

  27. A. A. Rodionov, D. A. Romanenkov, A. V. Zimin, et al., “Submesoscale structures and dynamics of water in the White Sea,” Fundam. Prikl. Gidrofiz. 7 (3), 29–41 (2014).

    Google Scholar 

  28. A. S. Sarkisyan, “Baroclinicity of the liquid and the bottom relief as the general factors in the theory of total flows,” Morsk. Gidrofiz. Issled., No. 4 (46), 79–95 (1969).

    Google Scholar 

  29. A. S. Sarkisyan, Numerical Analysis and Forecast of Marine Currents (Gidrometeoizdat, Leningrad, 1977) [in Russian].

    Google Scholar 

  30. A. S. Sarkisyan and A. I. Peredei, “Dynamic method as the first approximation in calculation of the level surface of a baroclinic ocean,” Meteorol. Gidrol., No. 4, 45–54 (1972).

    Google Scholar 

  31. N. G. Iakovlev, “A numerical model and preliminary results of calculations to reproduce the summer circulation in the Kara Sea,” Izv., Atmos. Ocean. Phys. 32, 660–668 (1996).

    Google Scholar 

  32. L. Brannigan, D. Marshall, A. Naveira-Garabato, et al., “The seasonal cycle of submesoscale flows,” Ocean Model. 92, 69–84 (2015).

    Article  Google Scholar 

  33. K. A. Korotenko, “Modeling mesoscale circulation of the Black Sea,” Oceanology (Engl. Transl.) 55, 820–826 (2015).

    Google Scholar 

  34. R. C. Pacanowski and S. G. H. Philander, “Parameterization of vertical mixing in numerical models of tropical oceans,” J. Phys. Oceanogr. 11 (11), 1443–1451 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Demyshev.

Additional information

Original Russian Text © S.G. Demyshev, N.A. Evstigneeva, 2018, published in Okeanologiya, 2018, Vol. 58, No. 2, pp. 181–191.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demyshev, S.G., Evstigneeva, N.A. Simulations of Hydrophysical Fields with High Spatial Resolution over the Northwestern Shelf of the Black Sea. Oceanology 58, 164–174 (2018). https://doi.org/10.1134/S0001437018020029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437018020029

Navigation