Skip to main content
Log in

On classification of sea surface oil films using TerraSAR-X satellite polarization data

  • Methods and Instruments of Research
  • Published:
Oceanology Aims and scope

Abstract

The paper presents the results of applying a new polarization method proposed in [28] to identify the type of surface pollution and differentiate between mineral oil films (crude oil and its emulsion and petroleum products) and films of other origin in sea surface radar images. The method is based on calculation of the quantitative characteristics for the ratios of suppression or intensification of scattered radio signals of different physical nature, viz., caused by capillary ripples several centimeters long, or wave breaking. TerraSAR-X satellite coaxial-polarized (VV/HH) SAR images are used. The data for analysis have been collected in areas where spots and slicks of known origin regularly occur, such as oil spills and natural oil seeps in the Gulf of Mexico and the Caspian Sea, and biogenic films in the Caspian Sea. The results of analyzing radar images from the TerraSAR-X satellite with controlled experimental oil emulsion spills in the North Sea are used for comparison. Based on the analysis of ten TerraSAR-X radar polarization images with surface sensing angles greater than 30°, it is shown that this method makes it possible to distinguish between oil spills and slicks formed by natural oil seeps and biogenic films with an accuracy higher than 80% regardless of the observation area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. G. Bass and I. M. Fuks, Scattering of Waves on a Statistically Uneven Surface (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  2. A. G. Boev and A. Ya. Matveev, “Evaluation of the amount of spilled oil in the water area of the Neftyanye Kamni Caspian oil field according to the data of multifrequency radar sounding,” Radiofiz. Radiostron. 10 (2), 178–188 (2005).

    Google Scholar 

  3. M. G. Bulatov, Yu. A. Kravtsov, O. Yu. Lavrova, K. Ts. Litovchenko, M. I. Mityagina, M. D. Raev, K.D. Sabinin, Y. G. Trokhimovskii, A. N. Churyumov, and I. V. Shugan, “Physical mechanisms of aerospace radar imaging of the ocean,” Phys.-Usp. 46 (63), 1063–7869 (2003).

    Google Scholar 

  4. A. K. Gyul’, The Problem of Pollution of the Caspian Sea (Muallim Neshriiiaty, Baku, 2003) [in Russian].

    Google Scholar 

  5. S. A. Ermakov, The Influence of Films on the Dynamics of Gravitational-Capillary Waves (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2010) [in Russian].

    Google Scholar 

  6. S. A. Ermakov, E. M. Zuikova, and S. G. Salashin, “Transformation of the spectra of short wind waves in film slicks,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 23 (7), 707–715 (1987).

    Google Scholar 

  7. A. Yu. Ivanov, “Oil pollution of the sea on the radar images of spacecraft Kosmos-1870 and Almaz-1,” Issled. Zemli Kosmosa, No. 6, 70–80 (1997).

    Google Scholar 

  8. A. Yu. Ivanov, “Slicks and film formations on satellite radar images,” Issled. Zemli Kosmosa, No. 3, 73–96 (2007).

    Google Scholar 

  9. A. Yu. Ivanov, B. N. Golubov, and V. V. Zatyagalova, “Oil and gas capacities and unloading of underground fluids in the southern part of the Caspian Sea according to satellite radar images,” Issled. Zemli Kosmosa, No. 2, 62–81 (2007).

    Google Scholar 

  10. A. Yu. Ivanov, B. N. Golubov, and N. V. Terleeva, “A comparative analysis of the distribution of natural oil spills in the southwestern part of the Caspian Sea according to the data of the space radar data with an assessment of the petroleum potential of the land,” Issled. Zemli Kosmosa, No. 6, 47–61 (2015).

    Google Scholar 

  11. A. Yu. Ivanov, M. Yu. Dostovalov, and A. A. Sineva, “Characterization of oil pollution around the oil rocks production site in the Caspian Sea using spaceborne polarimetric SAR imagery,” Izv., Atmos. Ocean. Phys. 48, 1014–1026 (2012).

    Article  Google Scholar 

  12. V. N. Kudryavtsev, N. A. Ivanova, L. A. Gushchin, and S. A. Ermakov, Preprint No. 765, IPF RAN (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2008).

    Google Scholar 

  13. O. Yu. Lavrova, A. G. Kostyanoi, S. A. Lebedev, et al., Complex Satellite Monitoring of Russian Seas (Institute of Space Research, Russian Academy of Sciences, Moscow, 2011) [in Russian].

    Google Scholar 

  14. O. Yu. Lavrova, M. I. Mityagina, S. S. Karimova, et al., “The use of RADARSAT-2 and TerraSAR-X radars for the analysis of hydrodynamic processes in the ocean,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 9 (2), 312–323 (2012).

    Google Scholar 

  15. V. I. Mikhailov, Surface Microlayer of the World Ocean: Hydrochemical and Physical Features (Gidrometeoizdat, Moscow, 1992) [in Russian].

    Google Scholar 

  16. I. A. Nemirovskaya, Oil in the Ocean: Pollution and Natural Flows (Nauchnyi Mir, Moscow, 2013) [in Russian].

    Google Scholar 

  17. A. A. Sineva, “Polarization radar for detection and identification of film pollution of the sea,” Tr. Mosk. Fiz.-Tekh. Inst. 6 (3), 129–141 (2014).

    Google Scholar 

  18. C. Brekke and A. Solberg, “Oil spill detection by satellite remote sensing,” Remote Sens. Environ. 95 (1), 1–13 (2005).

    Article  Google Scholar 

  19. A. Carpenter, “European Maritime Safety Agency CleanSeaNet activities oil pollution in the North Sea,” in The Handbook of Environmental Chemistry, Ed. by A. Carpenter (Springer-Verlag, New York, 2015), pp. 33–48. doi 10.1007/698_2015_429

    Google Scholar 

  20. G. Caulliez and C. A. Guérin, “Higher-order statistical analysis of short wind wave fields,” J. Geophys. Res.: Oceans 117 (6), 1–14 (2012).

    Google Scholar 

  21. A. N. Churyumov, Y. A. Kravtsov, O. Y. Lavrova, et al., “Signatures of resonant and non-resonant scattering mechanisms on radar images of internal waves,” Int. J. Remote Sens. 23 (20), 4341–4355 (2002).

    Article  Google Scholar 

  22. Ph. Dreuillet, H. Cantalloube, E. Colin, et al., “The ONERA RAMSES SAR: latest significant results and future developments,” Proceedings of the 2006 IEEE Radar Conference (Institute of Electrical and Electronics Engineers, New York, 2006), pp. 1–7.

    Google Scholar 

  23. H. A. Espedal and O. M. Johannessen, “Detection of oil spills near offshore installations using Synthetic Aperture Radar (SAR),” Int. J. Remote Sens. 21 (11), 2141–2144 (2000).

    Article  Google Scholar 

  24. G. Franceschetti, A. Iodice, D. Riccio, et al., “SAR raw signal simulation of oil slicks in ocean environments,” IEEE Trans. Geosci. Remote Sens. 40 (9), 1935–1949 (2002).

    Article  Google Scholar 

  25. M. Gade, W. Alpers, H. Hühnerfuss, et al., “Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR-C/X-SAR,” J. Geophys. Res.: Oceans 103 (9), 18 851–18 866 (1998).

    Article  Google Scholar 

  26. C.-A. Guerin, G. Soriano, and B. Chapron, “The weighted curvature approximation in scattering from sea surfaces,” Waves Random Media 20 (3), 364–384 (2010).

    Article  Google Scholar 

  27. D. V. Ivonin, A. Yu. Ivanov, C. Brekke, and S. Skrunes, “Calibrated method for discriminating sea surface slicks using Radarsat-2 co-polarized SAR images,” Proceedings of Geoscience and Remote Sensing Symposium (IGARSS) (IEEE International, Piscataway, NJ, 2015), pp. 3739–3742. doi 10.1109/IGARSS.2015.7326636

    Google Scholar 

  28. D. V. Ivonin, S. Skrunes, C. Brekke, and A. Y. Ivanov, “Interpreting sea surface slicks on the basis of the normalized radar cross-section model using Radarsat-2 co-polarization dual-channel SAR images,” Geophys. Res. Lett. 43 (6), 2748–2757 (2016).

    Article  Google Scholar 

  29. M. Journel, “CleanSeaNet. Unit C3. Satellite based monitoring services,” 17ème Journée d’Information du Cedre: La Détection des Pollutions Accidentelles et des Rejets Illicites (Paris, 2012). http://wwz.cedre.fr/en/content/download/1661/16513/file/7-ensa-clean-seanet-eng.pdf.

    Google Scholar 

  30. V. N. Kudryavtsev, B. Chapron, A. G. Myasoedov, et al., “On dual co-polarized SAR measurements of the ocean surface,” IEEE Geosci. Remote Sens. Lett. 10 (4), 761–765 (2013).

    Article  Google Scholar 

  31. V. N. Kudryavtsev, D. Hauser, G. Caudal, et al., “A semiempirical model of the normalized radar crosssection of the sea surface: 1. Background model,” J. Geophys. Res.: Oceans 108 (3), 2–24 (2003).

    Google Scholar 

  32. X. M. Li and S. Lehner, “Algorithm for sea surface wind retrieval from TerraSAR-X and TanDEM-X data,” IEEE Trans. Geosci. Remote Sens. 52 (5), 2928–2939 (2014).

    Article  Google Scholar 

  33. I. R. MacDonald, O. Garcia-Pineda, A. Beet, et al., Natural and unnatural oil slicks in the Gulf of Mexico,” J. Geophys. Res.: Oceans. 120, 8364–8380 (2015). doi 10.1002/2015JC011062

    Article  Google Scholar 

  34. I. R. MacDonald, J. F. Redly Jr., S. E. Best, et al., “Remote sensing inventory of active oil seeps and chemosynthetic communities in the northern Gulf of Mexico,” in Outgrowth of the AAPG Hedberg Research Conference “Hydrocarbon Migration and Its Near-Surface Expression (Vancouver, 1996), pp. 27–37.

    Google Scholar 

  35. L. S. Marple, “Digital spectral analysis: with applications,” in Digital Spectral Analysis: With Applications, Prentice-Hall Series in Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1987).

    Google Scholar 

  36. M. Ø. Moldestad and T. Schrader, ESSO BJR9: Ringhorne, Forseti og Balder; Egenskaper og Forvitring på Sjøen Relatert til Beredskap, Technical Report STF66 A01137 (Skandinavias Største Uavhengige Forskningsorganisasjon, Trondheim, 2002).

    Google Scholar 

  37. F. Nunziata, M. Migliaccio, and X. Li, “Sea oil slick observation using hybrid-polarity SAR architecture,” IEEE J. Ocean. Eng. 40 (2), 426–439 (2015). doi 10.1109/JOE.2014.2329424

    Article  Google Scholar 

  38. A. P. R. D. S. Rodrigues, CleanSeaNet: Surveillance of Sea-Based Oil Spills by Radar Satellite Images, Technical Report No. SK-09/26 (Chalmers University of Technology, Gothenburg, 2009). http://publications.lib.chalmers.se/records/fulltext/141265.pdf.

    Google Scholar 

  39. S. Skrunes, C. Brekke, and T. Eltoft, “Characterization of marine surface slicks by Radarsat-2 multipolarization features,” IEEE Trans. Geosci. Remote Sens. 52 (9), 5302–5319 (2014).

    Article  Google Scholar 

  40. S. Skrunes, C. Brekke, T. Eltoft, et al., Comparing near coincident C- and X-band SAR acquisitions of marine oil spills,” IEEE Trans. Geosci. Remote Sens. 53 (4), 1958–1975 (2015).

    Article  Google Scholar 

  41. A. Soloviev and R. Lukas, The Near-Surface Layer of the Ocean: Structure, Dynamics, and Applications (Springer-Verlag, New York, 2013), Vol. 48, pp. 71–80.

    Google Scholar 

  42. G. Staples and R. Touzi, “The application of Radarsat-2 quad-polarized data for oil slick characterization,” Proceedings of the 2014 International Oil Spill Conference (Savannah, 2014), No. 1, pp. 2242–2252.

    Google Scholar 

  43. Airbus Defence & Space, TerraSAR-X image product guide: basic and enhanced radar satellite imagery, issue 2.0, August 2014. http://www.geo-airbusds.com/ files/pmedia/public/r459_9_201408_tsxx-itd-ma-0009_t sx-productguide_i2.00.pdf.

  44. K. Topouzelis, V. Karathanassi, P. Pavlakis, and D. Rokos, “Detection and discrimination between oil spills and look-alike phenomena through neural networks,” ISPRS J. Photogramm. 62 (4), 264–270 (2007).

    Article  Google Scholar 

  45. G. Valenzuela, “Scattering of electromagnetic waves from a tilted slightly rough surface,” Radio Sci. 3, 1057–1066 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Ivonin.

Additional information

Original Russian Text © D.V. Ivonin, A.Yu. Ivanov, 2017, published in Okeanologiya, 2017, Vol. 57, No. 5, pp. 815–829.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivonin, D.V., Ivanov, A.Y. On classification of sea surface oil films using TerraSAR-X satellite polarization data. Oceanology 57, 738–750 (2017). https://doi.org/10.1134/S0001437017040099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437017040099

Navigation