Skip to main content
Log in

On Descriptive Characterizations of an Integral Recovering a Function from Its \(L^r\)-Derivative

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The notion of \(L^r\)-variational measure generated by a function \(F\in L^r[a,b]\) is introduced and, in terms of absolute continuity of this measure, a descriptive characterization of the \(H\!K_r\)-integral recovering a function from its \(L^r\)-derivative is given. It is shown that the class of functions generating absolutely continuous \(L^r\)-variational measure coincides with the class of \(ACG_{r}\)-functions which was introduced earlier, and that both classes coincide with the class of the indefinite \(H\!K_{r}\)-integrals under the assumption of \(L^r\)-differentiability almost everywhere of the functions consisting these classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Thomson, Monogr. Textbooks Pure Appl. Math., Vol. 183: Symmetric Properties of Real Functions, (Marcel Dekker, New York, 1994).

    Google Scholar 

  2. V. A. Skvortsov and F. Tulone, “Kurzweil–Henstock type integral on zero-dimensional group and some of its applications,” Czech. Math. J. 58 (4), 1167–1183 (2008).

    Article  MathSciNet  Google Scholar 

  3. V. A. Skvortsov and F. Tulone, “Henstock–Kurzweil type integral in Fourier analysis on zero-dimensional group,” Tatra Mt. Math. Publ. 44, 41–51 (2009).

    MathSciNet  MATH  Google Scholar 

  4. V. A. Skvortsov and F. Tulone, “Multidimensional dyadic Kurzweil–Henstock- and Perron-type integrals in the theory of Haar and Walsh series,” J. Math. Anal. Appl. 421 (2), 1502–1518 (2015).

    Article  MathSciNet  Google Scholar 

  5. V. A. Skvortsov and F. Tulone, “On the coefficients of multiple series with respect to Vilenkin system,” Tatra Mt. Math. Publ. 68, 81–92 (2017).

    MathSciNet  MATH  Google Scholar 

  6. V. A. Skvortsov and F. Tulone, “Multidimensional \(P\)-adic integrals in some problems of harmonic analysis,” Minimax Theory Appl. 2 (1), 153–174 (2017).

    MathSciNet  MATH  Google Scholar 

  7. G. Oniani and F. Tulone, “On the possible values of upper and lower derivatives with respect to differentiation bases of product structure,” Bull. Georgian Natl. Acad. Sci. (N. S.) 12 (1), 12–15 (2018).

    MathSciNet  MATH  Google Scholar 

  8. G. Oniani and F. Tulone, “On the almost everywhere convergence of multiple Fourier–Haar series,” J. Contemp. Math. Anal. 54 (5), 288–295 (2019).

    Article  MathSciNet  Google Scholar 

  9. F. Tulone, “Generality of Henstock–Kurzweil type integral on a compact zero-dimensional metric space,” Tatra Mt. Math. Publ. 49, 81–88 (2011).

    MathSciNet  MATH  Google Scholar 

  10. R. A. Gordon, Grad. Stud. Math., Vol. 4: The Integrals of Lebesgue, Denjoy, Perron, and Henstock (Amer. Math. Soc., Providence, RI, 1994).

    Google Scholar 

  11. A. Boccuto, V. A. Skvortsov, and F. Tulone, “A Hake-type theorem for integrals with respect to abstract derivation bases in the Riesz space setting,” Math. Slovaca 65 (6), 1319–1336 (2015).

    Article  MathSciNet  Google Scholar 

  12. V. A. Skvortsov and F. Tulone, “Generalized Hake property for integrals of Henstock type,” Moscow Univ. Math. Bull. 68 (6), 270–274 (2013).

    Article  MathSciNet  Google Scholar 

  13. V. Skvortsov and F. Tulone, “A version of Hake’s theorem for Kurzweil–Henstock integral in terms of variational measure,” Georgian Math. J. 28 (3), 471–476 (2021).

    Article  MathSciNet  Google Scholar 

  14. A. Bokkuto, V. A. Skvortsov, and F. Tulone, “Integration of functions ranging in complex Riesz space and some applications in harmonic analysis,” Math. Notes 98 (1), 25–37 (2015).

    Article  MathSciNet  Google Scholar 

  15. V. A. Skvortsov and F. Tulone, “Henstock type integral in compact zero-dimensional metric space and quasi-measures representations,” Moscow Univ. Math. Bull. 67 (2), 55–60 (2012).

    Article  MathSciNet  Google Scholar 

  16. B. S. Thomson, Mem. Amer. Math. Soc., Vol. 452: Derivates of Interval Functions (Amer. Math. Soc., Providence, RI, 1991).

    Google Scholar 

  17. B. Bongiorno, L. di Piazza, and V. Skvortsov, “A new full descriptive characterization of Denjoy–Perron integral,” Real Anal. Exchange 20 (2), 656–663 (1996).

    MathSciNet  MATH  Google Scholar 

  18. T. P. Lukashenko, V. A. Skvortsov, and A. P. Solodov, Generalized Integrals (URSS, Moscow, 2011) [in Russian].

    Google Scholar 

  19. V. Ene, Lecture Notes in Math., Vol. 1603: Real Functions – Current Topics (Springer- Verlag, Berlin, 1995).

    Google Scholar 

  20. S. Schwabik, “Variational Measures and the Kurzweil–Henstock integral,” Math. Slovaca 59 (6), 731–752 (2009).

    Article  MathSciNet  Google Scholar 

  21. V. A. Skvortsov, “Variations and variational measures in integration theory and some applications,” J. Math. Sci. 91 (5), 3293–3322 (1998).

    Article  MathSciNet  Google Scholar 

  22. A. P. Calderon and A. Zygmund, “Local properties of solutions of elliptic partial differential equations,” Studia Math. 20, 171–225 (1961).

    Article  MathSciNet  Google Scholar 

  23. L. Gordon, “Perron’s integral for derivatives in \(L^{r}\),” Studia Math. 28, 295–316 (1967).

    Article  MathSciNet  Google Scholar 

  24. P. Musial and Y. Sagher, “The \(L^r\) Henstock–Kurzweil integral,” Studia Math. 160 (1), 53–81 (2004).

    Article  MathSciNet  Google Scholar 

  25. P. Musial, V. Skvortsov and F. Tulone, “The \(H\!K_r\)-integral is not contained in the \(P_r\)-integral,” Proc. Amer. Math. Soc. (2022) (in press).

    MathSciNet  MATH  Google Scholar 

  26. P. Musial and F. Tulone, “Integration by parts for the \(L^r\) Henstock–Kurzweil integral,” Electron. J. Differential Equations 2015 (44), 1–7 (2015).

    MathSciNet  MATH  Google Scholar 

  27. P. Musial and F. Tulone, “Dual of the class of \(H\!K_r\)-integrable functions,” Minimax Theory Appl. 4 (1), 151–160 (2019).

    MathSciNet  MATH  Google Scholar 

  28. P. Musial and F. Tulone, “The \(L^r\)-variational integral,” Mediterr. J. Math. (2022) (in press).

    MathSciNet  MATH  Google Scholar 

  29. V. Skvortsov and Yu. Zherebyov, “On Classes of functions generating absolutely continuous variational measures,” Real Anal. Exchange 30 (1), 361–372 (2005).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research under grant 20-01-00584.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Musial.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 111, pp. 411-421 https://doi.org/10.4213/mzm13284.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musial, P., Skvortsov, V.A. & Tulone, F. On Descriptive Characterizations of an Integral Recovering a Function from Its \(L^r\)-Derivative. Math Notes 111, 414–422 (2022). https://doi.org/10.1134/S0001434622030099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622030099

Keywords

Navigation