Skip to main content
Log in

Regularity of Continuous Multilinear Operators and Homogeneous Polynomials

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Regular multilinear operators and regular homogeneous polynomials acting between Banach lattices are automatically continuous, but the converse, in general, is not true. The problem arises of characterizing Banach lattices for which the classes of continuous and regular multilinear operators (or homogeneous polynomials) coincide. The aim of this note is to extend two results in this direction, earlier obtained for linear operators, to the above-mentioned classes of operators and polynomials. The main method is linearization with the use of the Fremlin tensor product of Banach lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. A. Kusraeva, “Powers of quasi-Banach lattices and orthogonally additive polynomials,” J. Math. Anal. Appl. 458 (1), 767–780 (2018).

    Article  MathSciNet  Google Scholar 

  2. Hong Yun Xiong, “On whether or not \(\mathcal{L}(E,F)=\mathcal{L}^r(E,F)\) for some classical Banach lattices \(E\) and \(F\),” Indag. Math., No. 46, 267–282 (1984).

    Article  MathSciNet  Google Scholar 

  3. L. V. Kantorovich and B. Z. Vulikh, “Sur la représentation des opérations linéaires,” Compositio Math. 5, 119–165 (1937).

    MATH  Google Scholar 

  4. B. Z. Vulikh, Introduction to the Theory of Semi-Ordered Spaces (GIFML, Moscow, 1961) [in Russian].

    MATH  Google Scholar 

  5. C. D. Aliprantis and O. Burkinshaw, Positive Operators (Academic Press, New York, 1985).

    MATH  Google Scholar 

  6. P. Meyer-Nieberg, Banach Lattices (Springer- Verlag, Berlin, 1991).

    Book  Google Scholar 

  7. Yu. Synnachke, “On an operator adjoint to a regular one and some of its applications to the question of complete continuity and weak complete continuity of regular operators,” Vestn. Leningradsk. Gos. Univ., Ser. Mat. Mekh., No. 1, 60–69 (1972).

    Google Scholar 

  8. Yu. A. Abramovich and A. W. Wickstead, “When each continuous operator is regular. II,” Indag. Math. (N. S.) 8 (3), 281–294 (1997).

    Article  MathSciNet  Google Scholar 

  9. Q. Bu and G. Buskes, “Polynomials on Banach lattices and positive tensor products,” J. Math. Anal. Appl. 388, 845–862 (2012).

    Article  MathSciNet  Google Scholar 

  10. J. Loane, Polynomials on Riesz Spaces, Thesis (Department of Mathematics, National University of Ireland, Galway, 2007).

    MATH  Google Scholar 

  11. S. Dineen, Complex Analysis on Infinite-Dimensional Spaces (Springer- Verlag, Berlin, 1999).

    Book  Google Scholar 

  12. Y. A. Abramovich and C. D. Aliprantis, “Positive operators,” in Handbook of the Geometry of Banach Spaces (North-Holland, Amsterdam, 2001), Vol. I, pp. 85–122.

    Article  Google Scholar 

  13. D. H. Fremlin, Measure Theory. Vol. 3. Measure Algebras (Cambridge Univ. Press, Cambridge, 2002).

    MATH  Google Scholar 

  14. Q Bu, G. Buskes and Y. Li, “Abstract \(L\)- and abstract \(M\)-spaces of polynomials on Banach lattices,” Proc. Edinb. Math. Soc. (2) 58 (3), 617–629 (2015).

    Article  MathSciNet  Google Scholar 

  15. R. A. Ryan, Introduction to Tensor Products of Banach Spaces (Springer- Verlag, London, 2002).

    Book  Google Scholar 

  16. Z. A. Kusraeva, “Representation of orthogonally additive polynomials,” Siberian Math. J. 52 (2), 248–255 (2011).

    Article  MathSciNet  Google Scholar 

  17. Z. A. Kusraeva and S. N. Siukaev, “Some properties of orthogonally additive homogeneous polynomials on Banach lattices,” Vladikavkaz. Mat. Zh. 22 (4), 92–103 (2020).

    MathSciNet  MATH  Google Scholar 

  18. D. H. Fremlin, “Tensor product of Banach lattices,” Math. Ann. 211, 87–106 (1974).

    Article  MathSciNet  Google Scholar 

  19. H. H. Schaefer, Banach Lattices and Positive Operators (Springer- Verlag, Berlin, 1974).

    Book  Google Scholar 

  20. D. H. Fremlin, Topological Riesz Spaces and Measure Theory (Cambridge Univ. Press, London, 1974).

    Book  Google Scholar 

  21. Yu. A. Abramovich and A. W. Wickstead, “The regularity of order bounded operators into \(C(K)\). II,” Quart. J. Math. Oxford Ser. (2) 44 (175), 257–270 (1993).

    Article  MathSciNet  Google Scholar 

  22. D. H. Fremlin, “Tensor product of Archimedean vector lattices,” Amer. J. Math. 94, 777–798 (1972).

    Article  MathSciNet  Google Scholar 

  23. A. W. Wickstead, “The regularity of order bounded operators into \(C(K)\),” Quart. J. Math. Oxford Ser. (2) 41 (163), 359–368 (1990).

    Article  MathSciNet  Google Scholar 

  24. K. Yu. Il’ina and Z. A. Kusraeva, “On the contunuation of positive operators,” Sibirsk. Mat. Zh. 61 (2), 330–336 (2020).

    Article  MathSciNet  Google Scholar 

  25. A. A. Gelieva and Z. A. Kusraeva, “On dominated extension of linear operators,” Math. Notes 108 (2), 171–178 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Kusraeva.

Additional information

Translated from Matematicheskie Zametki, 2021, Vol. 110, pp. 726–735 https://doi.org/10.4213/mzm13089.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusraeva, Z.A. Regularity of Continuous Multilinear Operators and Homogeneous Polynomials. Math Notes 110, 718–725 (2021). https://doi.org/10.1134/S0001434621110080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434621110080

Keywords

Navigation