Skip to main content
Log in

Localized Blow-Up Regimes for Quasilinear Doubly Degenerate Parabolic Equations

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Singular blow-up regimes are studied for a wide class of second-order quasilinear parabolic equations. Energy methods are used to obtain exact (in a certain sense) estimates of the final profile of the generalized solution near the blow-up time depending on the rate of increase of the global energy of this solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Kovalevsky, I. I. Skrypnik, and A. E. Shishkov, Singular Solutions in Nonlinear Elliptic and Parabolic Equations, in De Gruyter Ser. Nonlinear Anal. Appl. (Berlin, Basel, 2016), Vol. 24.

  2. H. W. Alt and S. Luckhaus, “Quasilinear elliptic-parabolic differential equations,” Math. Z. 183 (3), 311–341 (1983).

    Article  MathSciNet  Google Scholar 

  3. A. V. Ivanov and P. 3. Mkrtychan, “Existence of Holder continuous generalized solutions of the first boundary value problem for quasilinear doubly degenerate parabolic equations,” in Boundary-Value Problems of Mathematical Physics and Related Problems of Theory of Functions. 21, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova (LOMI) (Nauka, Leningrad, 1990), Vol. 182, pp. 5–28 [J. Sov. Math. 62 (3), 2725–2740 (1992)].

    Google Scholar 

  4. A. V. Ivanov, P. 3. Mkrtychan, and W. Jäger, “Existence and uniqueness of a regular solution of the Cauchy–Dirichlet problem for a class of doubly nonlinear parabolic equations,” in Boundary-Value Problems of Mathematical Physics and Related Problems of Theory of Functions. 25, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI) (Nauka, St. Petersburg., 1994), Vol. 213, pp. 48–65 [J. Math. Sci. (New York) 84 (1), 845–855 (1997)].

    Google Scholar 

  5. A. A. Samarskii, V A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-Up Regimes for Quasilinear Parabolic Equations (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  6. B. H. Gilding and M. A. Herrero, “Localization and blow-up of termal waves in nonlinear heat conduction with peaking,” Math. Ann. 282 (2), 223–242 (1988).

    Article  MathSciNet  Google Scholar 

  7. C. Corta´zar and M. Elgueta, “Localization and boundedness of the solutions of the Neumann problem for a filtration equation,” Nonlinear Anal. 13(1), 33–41 (1989).

    Article  MathSciNet  Google Scholar 

  8. B. H. Gilding and I. Goncerzewicz, “Localization of solutions of exterior domain problems for the porous media equation with radial symmetry,” SIAM J. Math. Ann. 31 (4), 862–893 (2000).

    Article  MathSciNet  Google Scholar 

  9. T. O. Venegas, “The porous media equation with blowing up boundary data,” Adv. Nonlinear Stud. 9 (1), 1–27 (2009).

    Article  MathSciNet  Google Scholar 

  10. A. E. Shishkov and A. G. Shchelkov, “Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains,” Mat. Sb. 190 (3), 129–160 (1999) [Sb. Math. 190 (3), 447–479(1999)].

    Article  MathSciNet  Google Scholar 

  11. V. A. Galaktionov and A. E. Shishkov, “Saint-Venant’s principle in blow-up for higher order quasilinear parabolic equations,” Proc. Roy. Soc. Edinburgh. Sect. A 133 (5), 1075–1119 (2003).

    Article  MathSciNet  Google Scholar 

  12. V. A. Galaktionov and A. E. Shishkov, “Structure of boundary blow-up for higher-order quasilinear parabolic equations,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2051), 3299–3325 (2004).

    Article  MathSciNet  Google Scholar 

  13. A. V. Ivanov, “Maximum modulus estimates for generalized solutions of doubly nonlinear parabolic equations,” in Boundary-Value Problems of Mathematical Physics and Related Problems of Theory of Functions. 26, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI) (POMI, St. Petersburg., 1995), Vol. 221, pp. 83–113 [J. Math. Sci. (New York) 87 (2), 3322–3342 (1997)].

    Google Scholar 

  14. E. DiBenedetto, Degenerate Parabolic Equations (Springer-Verlag, New York, 1993).

    Book  Google Scholar 

  15. K. O. Buryachenko and I. I. Skrypnik, “Riesz potentials and pointwise estimates of solutions to anisotropic porous medium equation,” Nonlinear Anal. 178, 50–85 (2019).

    Article  MathSciNet  Google Scholar 

  16. G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, in Séminaire de Mathématiques Supérieures (Les Presses de l’Université de Montréal, Montréal, 1966), Vol. 16.

Download references

Funding

The work of the first-named author was supported by the “5–100” program of RUDN University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. E. Shishkov or Ye. A. Yevgenieva.

Additional information

Russian Text © The Author(s), 2019, published in Matematicheskie Zametki, 2019, Vol. 106, No. 4, pp. 622–635.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishkov, A.E., Yevgenieva, Y.A. Localized Blow-Up Regimes for Quasilinear Doubly Degenerate Parabolic Equations. Math Notes 106, 639–650 (2019). https://doi.org/10.1134/S000143461909030X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143461909030X

Keywords

Navigation