Skip to main content
Log in

On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The trace-class property of Hankel operators (and their derivatives with respect to the parameter) with strongly oscillating symbol is studied. The approach used is based on Peller’s criterion for the trace-class property of Hankel operators and on the precise analysis of the arising triple integral using the saddle-point method. Apparently, the obtained results are optimal. They are used to study the Cauchy problem for the Korteweg–de Vries equation. Namely, a connection between the smoothness of the solution and the rate of decrease of the initial data at positive infinity is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rybkin, “The Hirota τ–function and well–posedness of the KdV equation with an arbitrary step–like initial profile decaying on the right half line,” Nonlinearity 24 (10), 2953–2990 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. A. Marchenko, “Nonlinear Equations and Operator Algebras,” in Math. Appl. (Soviet Ser.) (D. Reidel Publ., Dordrecht, 1988), Vol. 17.

    Google Scholar 

  3. A. Volberg and P. Yuditskii, “On the inverse scattering problem for Jacobi matrices with the spectrum on an interval, a finite system of the intervals or a Cantor set of positive length,” Comm. Math. Phys. 226 (3), 567–605 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Golinskii, A. Kheifets, F. Peherstorfer, and P. Yuditskii, “Scattering theory for CMV matrices: uniqueness, Helson–SzegŐ and strong SzegŐ theorems,” Integral Equations Operator Theory 69 (4), 479–508 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Grudsky and A. Rybkin, “Soliton theory and Hakel operators,” SIAM J. Math. Anal. 47 (3), 2283–2323 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Rybkin, “KdV equation beyond standard assumptions on initial data,” Phys. D 365, 1–11 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. V. Zakharov, S. A. Dyachenko, and V. E. Zakharov, “Bounded solutions of KdV and non–periodic one–gap potentials in quantum mechanics,” Lett. Math. Phys. 106 (6), 731–740 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  8. D. V. Zakharov, S. A. Dyachenko, and V. E. Zakharov, “Primitive potentials and bounded solutions of the KdV equation,” Phys. D 333, 148–156 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Rybkin, “Spatial analyticity of solutions to integrable systems. I. the KdV equation case,” Comm. Partial Differential Equations 38 (5), 802–822 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Cohen and T. Kappeler, “Solutions to the Korteweg–de Vries equation with initial profile in L11 (R) ∩ LN1(R+),” SIAM J. Math. Anal. 18 (4), 991–1025 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. V. Peller, “Hankel operators of class Sp and their applications (rational approximation, Gaussian processes, the problem of majorizing operators),” Mat. Sb. 113 (155) (4 (12)), 538–581 (1980) [Math. USSR–Sb. 41 (4), 443–479 (1982)].

    Article  MATH  Google Scholar 

  12. V. V. Peller, Hankel Operators and Their Applications (Springer, New York, 2003).

    Book  MATH  Google Scholar 

  13. M. V. Fedoryuk, Saddle–Point Method (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  14. S. P. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, and V. E. Zakharov, Theory of Solitons. The Inverse Scattering Method (Plenum, New York, 1984).

    MATH  Google Scholar 

  15. P. Deift and E. Trubowitz, “Inverse scattering on the line,” Comm. Pure Appl.Math. 32 (2), 121–251 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  16. B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Non–linear equations of Korteweg–de Vries type, finite–zone linear operators, and Abelian varieties,” Uspekhi Mat. Nauk 31 (1 (187)), 55–136 (1976) [RussianMath. Surveys 31 (1), 59–146 (1976)].

    MATH  Google Scholar 

  17. F. Gesztesy and H. Holden, Soliton Equations and Their Algebro–Geometric Solutions. Vol. I: (1 + 1)–Dimensional Continuous Models, in Cambridge Stud. Adv. Math. (Cambridge Univ. Press, Cambridge, 2003), Vol. 79.

    Book  MATH  Google Scholar 

  18. A. R. Its and V. B. Matveev, “Schrödinger operators with finite–gap spectrum and N–soliton solutions of the Korteweg–de Vries equation,” Teoret. Mat. Fiz. 23 (1), 51–68 (1975) [Theoret. and Math. Phys. 23 (1), 343–355 (1975)].

    MathSciNet  Google Scholar 

  19. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteweg–de Vries equation,” Phys. Rev. Lett. 19, 1095–1097 (1967).

    Article  MATH  Google Scholar 

  20. I. Krichever and S. P. Novikov, “Periodic and almost–periodic potentials in inverse problems,” Inverse Problems 15 (6), R117–R144 (1999).

    Google Scholar 

  21. J. B. McLeod and P. J. Olver, “The connection between partial differential equations soluble by inverse scattering and ordinary differential equations of Painlevétype,” SIAMJ.Math. Anal. 14 (3), 488–506 (1983).

    Article  MATH  Google Scholar 

  22. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering, in LondonMath. Soc. Lecture Note Ser. (Cambridge Univ. Press, Cambridge, 1991), Vol. 149.

    Book  Google Scholar 

  23. V. A. Marchenko, “The Cauchy problem for the KdV equation with nondecreasing initial data,” in What is Integrability?, Springer Ser. Nonlinear Dynam. (Springer–Verlag, Berlin, 1991), pp. 273–318.

    Chapter  Google Scholar 

  24. Percy Deift, “Some open problems in random matrix theory and the theory of integrable systems,” in Integrable Systems and Random Matrices, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2008), Vol. 458, pp. 419–430.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Dubard, P. Gaillard, C. Klein, and V. B. Matveev, “On multi–rogue wave solutions of the NLS equation and positon solutions of the KdV equation,” Eur. Phys. J. Special Topics 185 (1), 247–258 (2010).

    Article  Google Scholar 

  26. A. V. Gurevich and P. Pitaevskii, “Decay of initial discontinuity in the Korteweg–de Vries equation,” Pis’ma ZhETF 17 (5), 193–195 (1973) [JETP Lett. 17, 193–195 (1973)].

    Google Scholar 

  27. E. Ya. Khruslov, “Asymptotics of the solution of the Cauchy problem for the Korteweg–de Vries equation with initial data of step type,” Mat. Sb. 99 (141) (2), 261–281 (1976) [Math. USSR–Sb. 28 (2), 229–248 (1976)].

    Google Scholar 

  28. E. Ya. Khruslov and V. P. Kotlyarov, “Soliton asymptotics of nondecreasing solutions of nonlinear completely integrable evolution equations,” in Spectral Operator Theory and Related Topics, Adv. Soviet Math. (Amer.Math. Soc., Providence, RI, 1994), Vol. 19, pp. 129–180.

    Google Scholar 

  29. A. Rybkin, “On Peller’s characterization of trace–class Hankel operators and smoothness of KdV solutions,” Proc. Amer. Math. Soc. 146 (4), 1627–1637 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Hirota, “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons,” Phys. Rev. Lett. 27, 1192–1194 (1971).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Grudsky.

Additional information

Original Russian Text © S. M. Grudsky, A. V. Rybkin, 2018, published in Matematicheskie Zametki, 2018, Vol. 104, No. 3, pp. 374–395.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grudsky, S.M., Rybkin, A.V. On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation. Math Notes 104, 377–394 (2018). https://doi.org/10.1134/S0001434618090067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434618090067

Keywords

Navigation