Skip to main content
Log in

On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Asymptotic formulas as x→∞ are obtained for a fundamental system of solutions to equations of the form

$$l\left( y \right): = {\left( { - 1} \right)^n}{\left( {p\left( x \right){y^{\left( n \right)}}} \right)^{\left( n \right)}} + q\left( x \right)y = \lambda y,x \in [1,\infty )$$

, where p is a locally integrable function representable as

$$p\left( x \right) = {\left( {1 + r\left( x \right)} \right)^{ - 1}},r \in {L^1}\left( {1,\infty } \right)$$

, and q is a distribution such that q = σ(k) for a fixed integer k, 0 ≤ kn, and a function σ satisfying the conditions \(\sigma \in {L^1}\left( {1,\infty } \right)ifk < n,\)\(\left| \sigma \right|\left( {1 + \left| r \right|} \right)\left( {1 + \left| \sigma \right|} \right) \in {L^1}\left( {1,\infty } \right)ifk = n\) . Similar results are obtained for functions representable as

$$p\left( x \right) = {x^{2n + v}}{\left( {1 + r\left( x \right)} \right)^{ - 1}},q = {\sigma ^{\left( k \right)}},\sigma \left( x \right) = {x^{k + v}}\left( {\beta + s\left( x \right)} \right)$$

, for fixed k, 0 ≤ kn, where the functions r and s satisfy certain integral decay conditions. Theorems on the deficiency index of the minimal symmetric operator generated by the differential expression l(y) (for real functions p and q) and theorems on the spectra of the corresponding self-adjoint extensions are also obtained. Complete proofs are given only for the case n = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Naimark, Linear Differential Operators (Ungar, New York, 1967; Nauka, Moscow, 1969).

    Google Scholar 

  2. P. Hartman, Ordinary Differential Equations (Wiley, New York, 1964; Mir, Moscow, 1970).

    MATH  Google Scholar 

  3. S. Albeverio, F. Gesztezy, R. Høegh-Krohn, and H. Holden, Some Exactly Solvable Models in Quantum Mechanics (Springer, Berlin–New York, 1988).

    Book  MATH  Google Scholar 

  4. S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators. Solvable Schrödinger Type Equations (Cambrige Univ. Press, Cambridge, 2000).

    Book  MATH  Google Scholar 

  5. A. C. Kostenko and M. M. Malamud, “One-dimensional Schrödinger operator with d-interactions,” Funktsional. Anal. Prilozhen. 44 (2), 87–91 (2010) [Functional Anal. Appl. 44 (2), 151–155 (2010)].

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Albeverio, A. Kostenko, and M. Malamud, “Spectral theory of semibounded Sturm–Liouville operators with local interactions on a discrete set,” J.Math. Phys. 51 (10), 1–24 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. A. Orlov, “On the deficiency index of linear differential operators,” Dokl. Akad. Nauk SSSR 92 (3), 483–486 (1953).

    MathSciNet  Google Scholar 

  8. R. B. Paris and A. D. Wood, “On the L2(I) nature of solutions of nth order symmetric differential equations and McLeod’s conjecture,” Proc. Roy. Soc. Edinburg 90A, 209–236 (1981).

    Article  MATH  Google Scholar 

  9. R. B. Paris and A. D. Wood, Asymptotics of High Order Differential Equations, Pitman Res. Notes in Math. Ser. (Longman Sci. Tech., Harlow, 1986), Vol.129.

  10. K. A. Mirzoev, “Orlov’s theorem on the deficiency index of differential operators,” Dokl. Ross. Akad. Nauk 380 (5), 591–595 (2001) [Dokl.Math. 64(2), 236–240 (2001)].

    MathSciNet  MATH  Google Scholar 

  11. K. A. Mirzoev, I. N. Braeutigam, and T. A. Safonova, “On deficiency index for some second order vector differential operators,” Ufimsk. Mat. Zh. 9 (1), 18–28 (2017) [Ufa Math. J. 9 (1), 18–28 (2016)].

    Article  MathSciNet  Google Scholar 

  12. I. N. Braeutigam and K. A. Mirzoev, “Asymptotics of solutions of matrix differential equations with nonsmooth coefficients,” Math. Zametki 104 (1), 148–153 (2018).

    Article  MathSciNet  Google Scholar 

  13. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955; Inostrannaya Literatura, Moscow, 1958).

    MATH  Google Scholar 

  14. M. S. P. Eastham, The Asymptotic Solution of Linear Differential Systems (Clarendon Press, Oxford, 1989).

    MATH  Google Scholar 

  15. A. M. Savchuk and A. A. Shkalikov, “Sturm–Liouville operators with singular potentials,” Mat. Zametki 66 (6), 897–912 (1999) [Math. Notes 66 (6), 741–753 (1999)].

    Article  MathSciNet  MATH  Google Scholar 

  16. A. M. Savchuk and A. A. Shkalikov, “Sturm–Liouville operators with distribution potentials,” TrudyMoskov. Mat. Obshch. 64, 159–212 (2003) [Trans.MoscowMath. Soc. 64, 143–192 (2003)].

    MathSciNet  MATH  Google Scholar 

  17. J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, “Weyl—Titchmarsh theory for Sturm—Liouville operators with distributional potentials,” Opuscula Math. 33, 467–563 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. K. A. Mirzoev, “Sturm–Liouville operators,” Trudy Moskov. Mat. Obshch. 75 (2), 335–359 (2014) [Trans. Moscow Math. Soc. 75, 281–299 (2014)].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Konechnaya.

Additional information

Original Russian Text © N.N. Konechnaya, K.A. Mirzoev, A.A. Shkalikov, 2018, published in Matematicheskie Zametki, 2018, Vol. 104, No. 2, pp. 231–242.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konechnaya, N.N., Mirzoev, K.A. & Shkalikov, A.A. On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients. Math Notes 104, 244–252 (2018). https://doi.org/10.1134/S0001434618070258

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434618070258

Keywords

Navigation