Skip to main content
Log in

Integral operators with homogeneous kernels in grand Lebesgue spaces

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Sufficient conditions on the kernel and the grandizer that ensure the boundedness of integral operators with homogeneous kernels in grand Lebesgue spaces on ℝn as well as an upper bound for their norms are obtained. For some classes of grandizers, necessary conditions and lower bounds for the norm of these operators are also obtained. In the case of a radial kernel, stronger estimates are established in terms of one-dimensional grand norms of spherical means of the function. A sufficient condition for the boundedness of the operator with homogeneous kernel in classical Lebesgue spaces with arbitrary radial weight is obtained. As an application, boundedness in grand spaces of the one-dimensional operator of fractional Riemann–Liouville integration and of a multidimensional Hilbert-type operator is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Iwaniec and C. Sbordone, “On the integrability of the Jacobian underminimal hypotheses,” Arch. Rational Mech. Anal. 119 (2), 129–143 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Di Fratta and A. Fiorenza, “A direct approach the duality of grand and small Lebesgue spaces,” Nonlinear Anal. Theory, Methods Appl. 70 (7), 2582–2592 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Fiorenza, “Duality and reflexivity in grand Lebesgue spaces,” Collect.Math. 51 (2), 131–148 (2000).

    MathSciNet  MATH  Google Scholar 

  4. A. Fiorenza, B. Gupta, and P. Jain, “The maximal theorem in weighted grand Lebesgue spaces,” Studia Math. 188 (2), 123–133 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Fiorenza and G. E. Karadzhov, “Grand and small Lebesgue spaces and their analogs,” Z. Anal. Anwendungen 23 (4), 657–681 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Fiorenza and J.M. Rakotoson, “Petits espaces de Lebesgue et quelques applications,” C. R. Math. Acad. Sci. Paris 334 (1), 23–26 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Greco, T. Iwaniec and C. Sbordone, “Inverting the p-harmonic operator,” Manuscripta Math. 92 (2), 249–258 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Kokilashvili, “Boundedness criterion for the Cauchy singular integral operator in weighted grand Lebesgue spaces and application to the Riemann problem,” Proc. A. RazmadzeMath. Inst. 151, 129–133 (2009).

    MathSciNet  MATH  Google Scholar 

  9. V. Kokilashvili, “The Riemann boundary value problem analytic functions in the frame of grand Lp spaces,” Bull. Georgian Natl. Acad. Sci. (N. S.) 4 (1), 5–7 (2010).

    MathSciNet  MATH  Google Scholar 

  10. V. Kokilashvili and A. Meskhi, “A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces,” Georgian Math. J. 16 (3), 547–551 (2009).

    MathSciNet  MATH  Google Scholar 

  11. A. Meskhi, “Weighted criteria for the Hardy transform under the Bp condition in grand Lebesgue spaces and some applications,” J.Math. Sci. (N. Y.) 178 (6), 622–636 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Kokilashvili’, “Boundedness criteria for singular integrals in weighted Grand Lebesgue spaces,” J. Math. Sci. (N. Y.) 170 (1), 20–33 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Kokilashvili, A. Meskhi, H. Rafeiro, and S. Samko, in Oper. Theory Adv. Appl., Vol. 248: Integral Operators in Non-Standard Function Spaces. Vol. 1. Variable Exponent Lebesgue and Amalgam Spaces (Birkäuser, Heidelberg, 2015).

    Google Scholar 

  14. V. Kokilashvili, A. Meskhi, H. Rafeiro, and S. Samko, in Oper. Theory Adv. Appl., Vol. 249: Integral Operators in Non-Standard Function Spaces. Vol. 1. Variable Exponent Lebesgue and Amalgam Spaces (Birkäuser, Heidelberg, 2016).

    MATH  Google Scholar 

  15. S. G. Samko and S. M. Umarkhadzhiev, “On Iwaniec–Sbordone spaces on sets which may have infinite measure,” Azerb. J. Math. 1 (1), 67–84 (2011).

    MathSciNet  MATH  Google Scholar 

  16. S. G. Samko and S. M. Umarkhadzhiev, “On Iwaniec-Sbordone spaces on sets which may have infinite measure: addendum,” Azerb. J. Math. 1 (2), 143–144 (2011).

    MATH  Google Scholar 

  17. S.M. Umarkhadzhiev, “Generalization of the notion of grand Lebesgue space,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 4, 42–51 (2014) [Russian Math. (Iz. VUZ) 58 (4), 35–43 (2014)].

    MathSciNet  MATH  Google Scholar 

  18. S. M. Umarkhadzhiev, “Boundedness of linear operators in weighted generalized grand Lebesgue spaces,” Vestnik AN Chechen. Resp. 19 (2), 5–9 (2013).

    Google Scholar 

  19. S. M. Umarkhadzhiev, “The boundedness of the Riesz potential operator from generalized grand Lebesgue spaces to generalized grand Morrey spaces,” in Oper. Theory Adv. Appl., Vol. 242: Operator Theory, Operator Algebras and Applications (Birkhäuser, Basel, 2014), pp. 363–373.

    Chapter  Google Scholar 

  20. S. M. Umarkhadzhiev, “Boundedness of the Riesz potential operator in weighted grand Lebesgue spaces,” Vladikavkaz.Mat. Zh. 16 (2), 62–68 (2014).

    MATH  Google Scholar 

  21. S.M. Umarkhadzhiev, “Denseness of the Lizorkin space in grand Lebesgue spaces,” Vladikavkaz.Mat. Zh. 17 (3), 75–83 (2015).

    MathSciNet  Google Scholar 

  22. S. Samko and S. Umarkhadzhiev, “Riesz fractional integrals in grand Lebesgue spaces on Rn,” Fract. Calc. Appl. Anal. 19 (3), 608–624 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  23. S. G. Samko, Hypersingular Integrals and Their Applications, in Anal. Methods Spec. Funct. (Taylor & Francis, London, 2002), Vol. 5.

  24. S. Samko and S. Umarkhadzhiev, “On grand Lebesgue spaces on sets of infinite measure,” Math. Nachr. 290 (5-6), 913–919 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. G. Krein, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators (Nauka,Moscow, 1978) [in Russian].

    Google Scholar 

  26. N. Karapetiants and S. Samko, Equations with Involutive Operators (Birkhäuser, Boston,MA, 2001).

    Book  MATH  Google Scholar 

  27. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities (Cambridge Univ. Press, Cambridge, 1934).

    MATH  Google Scholar 

  28. O. G. Avsyankin and E. I. Miroshnikova, “Multidimensional integral operators with homogeneous kernels in L p -spaces with submultiplicative weight,” Izv. Vyssh. Uchebn. Zaved., Sev.-Kavkaz. Reg., Estestv. Nauki, No. 5, 5–7 (2010).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Umarkhadzhiev.

Additional information

Dedicated to Professor Stefan Samko on the occasion of his 75th birthday.

Original Russian Text © S. M. Umarkhadzhiev, 2017, published in Matematicheskie Zametki, 2017, Vol. 102, No. 5, pp. 775–788.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umarkhadzhiev, S.M. Integral operators with homogeneous kernels in grand Lebesgue spaces. Math Notes 102, 710–721 (2017). https://doi.org/10.1134/S0001434617110104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434617110104

Keywords

Navigation