Skip to main content
Log in

Semiclassical asymptotics of the spectrum near the lower boundary of spectral clusters for a Hartree-type operator

  • Volume 101, Number 6, June, 2017
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The eigenvalue problem for a perturbed two-dimensional resonant oscillator is considered. The exciting potential is given by a nonlocal nonlinearity of Hartree type with smooth self-action potential. To each representation of the rotation algebra corresponds the spectral cluster around an energy level of the unperturbed operator. Asymptotic eigenvalues and asymptotic eigenfunctions close to the lower boundary of spectral clusters are obtained. For their calculation, asymptotic formulas for quantum means are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bogolyubov, “On a new form of the adiabatic theory of disturbances in the problem of interaction of particles with a quantum field,” Ukrain. Mat. Zh. 2 (2), 3–24 (1950).

    MathSciNet  Google Scholar 

  2. L. P. Pitaevskii, “Bose–Einstein condensation in magnetic traps. Introduction to the theory,” Uspekhi Fiz. Nauk 168 (6), 641–653 (1998). [Physics-Uspekhi 41 (6), 569–580 (1998)].

    Article  Google Scholar 

  3. A. S. Davydov, Solitons inMolecular Systems (Naukova Dumka, Kiev, 1984) [in Russian].

    Google Scholar 

  4. V. P. Maslov, The Complex WKB Method for Nonlinear Equations. I. Linear Theory (Nauka, Moscow, 1977; Birkhäuser Verlag, Basel, 1994).

    Google Scholar 

  5. M. V. Karasev, Quantum Reduction onto Orbits of Symmetry Algebras and the Ehrenfest Problem, Preprint ITF-87-157R (ITF AN UkrSSR, Kiev, 1987) [in Russian].

    Google Scholar 

  6. M. V. Karasev and A. V. Pereskokov, “Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. I: The model with logarithmic singularity,” Izv. Ross. Akad. Nauk Ser. Mat. 65 (5), 33–72 (2001) [Izv. Math. 65 (5), 883–921 (2001)].

    Article  MathSciNet  MATH  Google Scholar 

  7. M. V. Karasev and A. V. Pereskokov, “Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. II: Localization in planar discs,” Izv. Ross. Akad. Nauk Ser. Mat. 65 (6), 57–98 (2001) [Izv. Math. 65 (6), 1127–1168 (2001)].

    Article  MathSciNet  MATH  Google Scholar 

  8. V. V. Belov, F. N. Litvinets, and A. Yu. Trifonov, “Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton–Ehrenfest system,” Teoret. Mat. Fiz. 150 (1), 26–40 (2007) [Theoret. and Math. Phys. 150 (1), 21–33 (2007)].

    Article  MathSciNet  MATH  Google Scholar 

  9. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Short-Wave Diffraction Problems, Vol. 1: The Method of Canonical Problems, With the collaboration of M. M. Popov and I. A. Molotkov (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  10. M. V. Karasev and V. P. Maslov, “Asymptotic and Geometric Quantization,” UspekhiMat. Nauk 39 (6 (240)), 115–173 (1984) [Russian Math. Surveys 39 (6), 133–205 (1984)].

    MathSciNet  MATH  Google Scholar 

  11. M. V. Karasev, “Birkhoff resonances and quantum ray method,” in Days on Diffraction’ 2004, Proceedings of the International Seminar (St. Petersburg, 2004), pp. 114–126.

    Google Scholar 

  12. M. Karasev, “Noncommutative algebras, nanostructures, and quantum dynamics generated by resonances,” in Quanum Algebras and Poisson Geometry in Mathematical Phisics, Amer. Math. Soc. Trans. Ser. 2 (Amer. Math. Soc., Providence, RI, 2005), Vol. 216, pp. 1–17; “Noncommutative algebras, nanostructures, and quantum dynamics generated by resonances. II,” Adv. Stud. Contemp. Math. (Kyungshang) 11 (1), 33–56 (2005); “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances. III,” Russ. J. Math. Phys. 13 (2), 131–150 (2006).

    Google Scholar 

  13. A. V. Pereskokov, “Asymptotics of the spectrum and quantum averages near the boundaries of spectral clusters for perturbed two-dimensional oscillators,” Mat. Zametki 92 (4), 583–596 (2012) [Math. Notes 92 (3–4), 532–543 (2012)].

    Article  MathSciNet  MATH  Google Scholar 

  14. A. V. Pereskokov, “Asymptotics of the spectrumand quantum averages of a perturbed resonant oscillator near the boundaries of spectral clusters,” Izv. Ross. Akad. Nauk Ser. Mat. 77 (1), 165–210 (2013) [Izv. Math. 77 (1), 163–210 (2013)].

    Article  MathSciNet  MATH  Google Scholar 

  15. A. V. Pereskokov, “Semiclassical asymptotic spectrum of a Hartree-type operator near the upper boundary of spectral clusters,” Teoret. Mat. Fiz. 178 (1), 88–106 (2014) [Theoret. and Math. Phys. 178 (1), 76–92 (2014)].

    Article  MathSciNet  MATH  Google Scholar 

  16. A. V. Pereskokov, “Semiclassical Asymptotics of the spectrum near the upper boundary of spectral clusters for a Hartree-type operator,” Nanostruktury, Mat. Fiz., Modelir. 10 (1), 77–112 (2014).

    MathSciNet  MATH  Google Scholar 

  17. V. V. Golubev, Lectures in the Analytic Theory of Differential Equations (GITTL, Moscow–Leningrad, 1950) [in Russian].

    MATH  Google Scholar 

  18. A. Weinstein, “Asymptotics of the eigenvalues clusters for the Laplasian plus a potential,” Duke Math. J. 44 (4), 883–892 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Schwinger, “On angular momentum,” in Quantum Theory of Angular Momentum (Academic Press, New York, 1965), pp. 229–279.

    Google Scholar 

  20. M. Karasev and E. Novikova, “Non-Lie permutation relations, coherent states and quantum embedding,” in Coherent Transform, Quantization, and Poisson Geometry, Amer. Math. Soc. Trans. Ser. 2 (Amer. Math. Soc., Providence, RI, 1998), Vol. 187, pp. 1–202.

    Google Scholar 

  21. H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 2: Bessel Functions, Parabolic Cylinder Functions, Orthogonal Polynomials (McGraw–Hill, New York–Toronto–London, 1953; Nauka, Moscow, 1974).

    Google Scholar 

  22. M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations (Nauka, Moscow, 1983) [in Russian]; English transl.: Asymptotic Analysis: Linear Ordinary Differential Equations (Springer-Verlag, Berlin, 1993).

    MATH  Google Scholar 

  23. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Ed. by M. Abramowitz and I. Stegun (Dover Publications, New York, 1972; Nauka, Moscow, 1979).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pereskokov.

Additional information

Original Russian Text © A. V. Pereskokov, 2017, published in Matematicheskie Zametki, 2017, Vol. 101, No. 6, pp. 894–910.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereskokov, A.V. Semiclassical asymptotics of the spectrum near the lower boundary of spectral clusters for a Hartree-type operator. Math Notes 101, 1009–1022 (2017). https://doi.org/10.1134/S0001434617050285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434617050285

Keywords

Navigation