Skip to main content
Log in

New approach to classical thermodynamics

  • Survey Papers
  • Published:
Mathematical Notes Aims and scope Submit manuscript

We easily get accustomed to uniformity and constancy and cease to observe it. The usual things become natural and understandable, while the unusual ones seem unnatural and incomprehensible. Essentially, we cannot understand, but can only grow accustomed.

Ya. Frenkel

Abstract

The author constructs a new conception of thermodynamics which is based on new results in number theory. We consider a maximally wide range of gases, liquids, and fluids to which, in principle, the Carathéodory approach can be applied. The Carathéodory principle is studied using the Lennard-Jones potential as an example. On the basis of this example, we analyze the dispersive structure of a fluidwhose density exceeds the critical value. We introduce a new parameter, the “jamming factor,” which determines the jamming effect for such fluids. A comparison with experimental data for nonpolar molecules is carried out. The phase transition “liquid-amorphous solid” is studied in detail in the domain of negative pressures. We discuss the theoretical relationship between the obtained solutions and econophysics, some mysteries in biology, and other sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Maslov, “Undistinguishing statistics of objectively distinguishable objects: Thermodynamics and superfluidity of classical gas,” Math. Notes 94 (5–6), 722–813 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. P. Maslov, “Van derWaals equation from the viewpoint of probability distribution and the triple point as the critical point of the liquid-to-solid transition,” Russian J. Math. Phys. 22 (2), 188–200 (2015).

    Article  MATH  Google Scholar 

  3. H. N. Temperley, “The behavior of water under hydrostatic tension,” Proc. Phys. Soc. (L. ) 59, 199–208 (1947).

    Article  Google Scholar 

  4. V. P. Maslov and V. E. Nazaikinskii, “On the rate of convergence to the Bose–Einstein distribution,” Math. Notes 99 (1–2), 95–109 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. P. Maslov, ”Mathematical conception of “phenomenological” equilibrium thermodynamics,” Russian J. Math. Phys. 18 (4), 363–370 (2011).

    MathSciNet  MATH  Google Scholar 

  6. V. P. Maslov, “New construction of classical thermodynamics and UD-statistics,” Russian J. Math. Phys. 21 (2), 256–284 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. I. Burshtein, Molecular Physics (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  8. L. D. Landau and E. M. Lifshits, Statistical Physics (Nauka, Moscow, 1964) [in Russian].

    MATH  Google Scholar 

  9. A. M. Vershik, “Statistical mechanics of combinatorial partitions, and their limit shapes,” Funktsional. Anal. i Prilozhen. 30 (2), 19–39 (1996) [Functional Anal. Appl. 30 (2), 90–105 (1996)].

    Article  MathSciNet  MATH  Google Scholar 

  10. V. P Maslov and V. E. Nazaikinskii, “Disinformation theory for bosonic computational media”, Math. Notes 99 (5–6), 895–900 (2016).

    Article  Google Scholar 

  11. A. N. Kolmogorov, Jubilee Collection of Works in Three Volumes Ed. by A. N. Shiryaev (Fizmatlit, Moscow, 2003).

    Google Scholar 

  12. V. P. Maslov, “New Thermodynamics and Frost Cleft in Conifers,” Math. Notes 98 (1–2), 343–347 (2015).

    Article  MathSciNet  Google Scholar 

  13. V. P. Maslov and A. V. Maslov, “On the spectral gap in the region of negative pressures,” Math. Notes 99 (5–6), 711–714 (2016).

    Article  Google Scholar 

  14. V. N. Kolokoltsov and V. P. Maslov, Idempotent Analysis and Its Applicaions (Kluwer Academic Publ., Dordrecht–Boston–London, 1997).

    Book  MATH  Google Scholar 

  15. Yu. G. Pavlenko, Lectures in Theoretical Mechanics (Fizmatlit, Moscow, 2002).

    Google Scholar 

  16. V. P. Maslov, “Two-fluid picture of supercritical phenomena,” Theoret. and Math. Phys. 180 (3), 1095–1128 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  17. B. D. Summ, Foundations of Colloidal Chemistry (Izd. Tsentr “Akademia,” Moscow, 2007).

    Google Scholar 

  18. V. P. Maslov, Perturbation Theory and AsymptoticalMethods (Izd. Moskov. Univ., Moscow, 1965; Dunod, Paris, 1972) [in Russian and French].

    Google Scholar 

  19. J. Mozer, “Regularization of Kepler’s problem and the averaging method on a manifold,” Comm. Pure Appl. Math. 23, 609–636 (1970).

    Article  MathSciNet  Google Scholar 

  20. A. P. Veselov, “Something I learnt from JurgensMoser,” Nonlinear Dynamics 5 (1), 39–51 (2009).

    MathSciNet  Google Scholar 

  21. A. P. Veselov, “Integrable mappings,” UspekhiMat. Nauk 46 (5 281), 3–45 (1991).

    MathSciNet  MATH  Google Scholar 

  22. V. V. Kozlov, “Topological obstacles to the integrability of natural mechanical systems,” Dokl. Akad. Nauk SSSR 249 (6), 1299–1302 (1979).

    MathSciNet  Google Scholar 

  23. A. V. Bolsinov and I. A. Taimanov, “Integrable geodesic flowswith positive topological entropy,” Invent. Math. 140 (3), 639–650 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  24. N. N. Bogolyubov, On the Theory of Superfluidity, inSelectedWorks (NaukovaDumka, Kiev, 1970), Vol. 2 [in Russian].

    Google Scholar 

  25. A. Weinstein, “The Maslov Gerbe,” Letters in Mathematical Physics 69 (1), 3–9 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  26. V. P. Maslov, The Complex WKB Method in Nonlinear Equations (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  27. V. P. Maslov and O. Yu. Shvedov, The Complex Germ Method in Many-Particle Problems and in Quantum Field Theory (Editorial URSS, Moscow, 2000) [in Russian].

    Google Scholar 

  28. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 2nd ed. (Nauka, Moscow, 1964; translation of the 1st ed., Pergamon Press, London–Paris and Addison-Wesley Publishing Co., Inc., Reading, Mass., 1958).

    Google Scholar 

  29. V. P. Maslov and M. V. Fedoriuk, Semi-Classical Approximation in Quantum Mechnics (D. Reidel Publishung Company, Dordrecht–Boston–London, 1981).

    Book  Google Scholar 

  30. V. PMaslov, “On the van-der-Waals forces,” Math. Notes 99 (1–2), 284–289 (2016).

    Article  MathSciNet  Google Scholar 

  31. Functional Analysis, Ed. by S. G. Krein (Nauka, Moscow, 1964), Chap. 7.

  32. H. B. Casimir, “On the attraction between two perfectly conducting plates,” Proc. K. Ned. Akad. Wet. 51, 793–795 (1948).

    MATH  Google Scholar 

  33. V. P. Maslov, “Supercritical and critical states of fluids: New distribution and main invariants,” Math. Notes 96 (5–6), 732–738 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  34. V. P. Maslov, “Calculation of the number of collective degrees of freedom and of the admissible cluster size for isotherms in the Van-der-Waals model in supercritical states,” Russian J. Math. Phys. 21 (4), 494–503 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  35. V. P. Maslov, “Mathematical aspects of weakly nonideal Bose and Fermi gases on a crystal base,” Funktsional. Anal. i Prilozhen. 37 (2), 16–27 (2003) [Functional Anal. Appl. 37 (2) (2003)].

    Article  MathSciNet  MATH  Google Scholar 

  36. V. E. Panin and V. E. Egorushkin, “Curvature solitons as generalized structural wave carriers of plastic deformation and fracture,” Fiz. Mezomekh. 16 (3), 7–26 (2013) [Phys. Mesomech. 16 (3), 267–286 (2013)].

    Google Scholar 

  37. V. P. Maslov, “Unbounded Probability Theory and Multistep Relaxation Processes,” Math. Notes 93 (3–4), 451–459 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  38. G. L. Litvinov, “Maslov dequantization, idempotent and tropical mathematics: a brief introduction,” Journal of Math. Sciences 140 (3), 426–444 (2007).

    Article  MathSciNet  Google Scholar 

  39. V. L. Dubnov, V. P. Maslov, and V. E. Nazaikinskii, The Complex Lagrangian Germ and the Canonical Operator, arXiv:1606.03284 [math-ph], 9 June 2016.

    MATH  Google Scholar 

  40. V I. Arnold, A. Ya. Varchenko, and S. M. Gusein-Zade, Specific Features of Differentiable Mappings (Nauka, Moscow, 1982).

    Google Scholar 

  41. D. Schaeffer and V. Guillemin, Maslov Theory and Singularities ( MIT, Cambridge, Mass., 1972).

    Google Scholar 

  42. T. Poston and I. Stewart, Catastrophe Theory and Its Applications (Pitman, London, 1978;Mir, Moscow, 1980).

    MATH  Google Scholar 

  43. D. Yu. Ivanov, Critical Behavior of Non-Ideal Systems (Wiley-VCH, 2008).

    Book  MATH  Google Scholar 

  44. V. PMaslov, “Gas–amorphous solid and liquid–amorphous solid phase transitions. Introduction of negative mass and pressure from the mathematical viewpoint,” Math. Notes 97 (3–4), 423–430 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  45. V. P Maslov, “Generalization of Tropical Geometry and Amebas to the Region of Negative Pressures: Comparison with van derWaals Gas,” Math. Notes 98 (3–4), 429–440 (2015).

    Article  MATH  Google Scholar 

  46. V. P. Maslov and A. I. Shafarevich, “Asymptotic solutions of Navier-Stokes of equations and topological invariants of vector fields and Liouville foliation,” Theoretical and Math. Physics 180 (2), 967–982 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  47. I. C. Percival, “Semiclassical theory of bound states,” In: Advances in Chemical Physics 36, Ed. by Ilya Prigogine and Stuart A. Rice (JohnWiley and Sons, New-York–London–Sydney–Toronto, 1977), pp. 1–62.

    Chapter  Google Scholar 

  48. V. P. Maslov, “Theory of chaos and its application to the crisis of debts and the origin of the inflation,” Russian J. Math. Phys. 16 (1), 103–120 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  49. A. I. Anselm, Foundations of Statistical Physics and Thermodynamics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  50. H. Eyring, Basic Chemical Kinetics (Mir, Moscow, 1985).

    Google Scholar 

  51. I. A. Kvasnikov, Thermodynamics and Statistical Physics: Theory of Equilibrium Systems (URSS, Moscow, 2002), Vol. 2 [in Russian].

    Google Scholar 

  52. V. E. Nazaikinskii, “On the Asymptotics of the Number of States for the Bose-MaslovGas,” Math. Notes 91 (5–6), 816–823 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  53. G. L. Litvinov and G. Shpiz, “The Dequantization Transform and Generalized Newton Polytopes,” arXiv:math-ph/0412090v2, 9 Jan 2005.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Maslov.

Additional information

The article was submitted by the author for the English version of the journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, V.P. New approach to classical thermodynamics. Math Notes 100, 154–185 (2016). https://doi.org/10.1134/S0001434616070142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434616070142

Keywords

Navigation