Skip to main content
Log in

On the number of components of fixed size in a random A-mapping

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Let \(\mathfrak{S}_n \) be the semigroup of mappings of a set of n elements into itself, let A be a fixed subset of the set of natural numbers ℕ, and let V n (A) be the set of mappings from \(\mathfrak{S}_n \) for which the sizes of the contours belong to the set A. Mappings from it V n (A) are usually called A-mappings. Consider a random mapping σ n uniformly distributed on V n (A). It is assumed that the set A possesses asymptotic density ϱ, including the case ϱ = 0. Let ξ in be the number of connected components of a random mapping σ n of size i ∈ ℕ. For a fixed integer b ∈ ℕ, as n→∞, the asymptotic behavior of the joint distribution of random variables ξ1n , ξ2n ,..., ξ bn is studied. It is shown that this distribution weakly converges to the joint distribution of independent Poisson random variables η 1, η 2,..., η b with some parameters λ i = Eη i , i ∈ ℕ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Sachkov, Combinatorial Methods in Discrete Mathematics (Nauka, Moscow, 1977); in Encyclopedia of Mathematics and Its Applications (Cambridge Univ. Press, Cambridge, 1995), Vol. 55.

  2. V. N. Sachkov, Probabilistic Methods in Combinatorial Analysis (Nauka, Moscow, 1978; Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  3. V. N. Sachkov, Introduction to Combinatorial Methods of Discrete Mathematics (MTsNMO, Moscow,2004) [in Russian].

    Google Scholar 

  4. E. A. Bender, “Asymptotic methods in enumeration,” SIAM Rev. 16 (4), 485–515 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  5. Yu. V. Bolotnikov, V. N. Sachkov, and V. E. Tarakanov, “Asymptotic normality of certain quantities that are related to the cyclic structure of random permutations,” Mat. Sb. 99 (1), 121–133 (1976).

    MathSciNet  Google Scholar 

  6. L. M. Volynets, “An example of the nonstandard asymptotics of the number of permutations with constraints on the length of cycles,” in Probability Processes and Their Applications (MIéM, Moscow, 1989), pp. 85–90 [in Russian].

    Google Scholar 

  7. A. A. Grusho, “Properties of random permutations with constrains on the maximum cycle length,” in Progr. Pure Appl. DiscreteMath., Vol. 1: ProbabilisticMethods in Discrete Mathematics (VSP, Utrecht, 1993), pp. 459–469.

    MathSciNet  Google Scholar 

  8. G. I. Ivchenko and Yu. I. Medvedev, “On random permutations,” in Works in Discrete Mathematics (Fizmatlit, Moscow, 2002), Vol. 5, pp. 73–92 [in Russian].

    Google Scholar 

  9. A. V. Kolchin, “Equations that contain an unknown permutation,” Diskret. Mat. 6 (1), 100–115 (1994) [Discrete Math. Appl. 4 (1), 59–71 (1994)].

    MathSciNet  Google Scholar 

  10. V. F. Kolchin, “The number of permutations with cycle lengths from a fixed set,” in Random Graphs (Wiley, New York, 1992), Vol. 2, pp. 139–149.

    Google Scholar 

  11. F. Manstavicius, “On random permutations without cycles of some lengths,” Period.Math. Hung. 42 (1–2), 37–44 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  12. M. P. Mineev and A. I. Pavlov, “On an equation in permutations,” in Trudy Mat. Inst. Steklov, Vol. 142: Number Theory, Mathematical Analysis, and Their Applications (MIAN, Moscow, 1976), pp. 182–194 [Proc. Steklov Inst.Math. 142, 195–208 (1979)].

    MathSciNet  Google Scholar 

  13. A. I. Pavlov, “On two classes of permutations with number-theoretic conditions on the lengths of the cycles,” Mat. Zametki 62 (6), 881–891 (1997) [Math. Notes 62 (5–6), 739–746 (1997)].

    Article  Google Scholar 

  14. A. N. Timashev, “Limit theorems for allocation of particles over different cells with restrictions to the size of the cells,” Teor. Veroyatnost. Primenen. 49 (4), 712–725 (2004) [Theory Probab. Appl. 49 (4), 659–670 (2005)].

    Article  MathSciNet  Google Scholar 

  15. A. L. Yakymiv (Yakimiv), Probabilistic Applications of Tauberian Theorems, (Fizmatlit, Moscow, 2005); in Modern Probability and Statistics (VSP, Utrecht, 2005).

    Book  MATH  Google Scholar 

  16. V. N. Sachkov, “Mappings of a finite set with limitations on contours and height,” Teor. Veroyatnost. Primenen. 17 (4), 679–694 (1972) [Theory Probab. Appl. 17 (4), 640–656 (1972)].

    MathSciNet  Google Scholar 

  17. V. N. Sachkov, “Random mappings with bounded height,” Teor. Veroyatnost. Primenen. 18 (1), 122–132 (1973) [Theory Probab. Appl. 18 (1), 120–130 (1973)].

    Google Scholar 

  18. Yu. L. Pavlov, Random forests. Probabilistic methods in discrete mathematics (Karelsk. Science Center, Russian Academy of Sciences, Petrozavodsk, 1996; VSP, Utrecht, 1997).

    Google Scholar 

  19. V. F. Kolchin, Random Mappings, in Probability Theory and Mathematical Statistics (Nauka, Moscow, 1984; Optimization Software, New York, 1986).

    Google Scholar 

  20. V. F. Kolchin, Random Graphs, in Probability Theory and Mathematical Statistics (Fizmatlit, Moscow, 2000; Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  21. Yu. L. Pavlov, “Limit theorems for sizes of trees in the unlabelled graph of a random mapping,” Diskret.Mat. 16 (3), 63–75 (2004) [Discrete Math. Appl. 14 (4), 329–342 (2004)].

    Article  Google Scholar 

  22. B. A. Sevast’yanov, “Convergence in distribution of random mappings of finite sets to branching processes,” Diskret.Mat. 17 (1), 18–21 (2005) [DiscreteMath. Appl. 15 (2), 105–108 (2005)].

    Article  Google Scholar 

  23. A. N. Timashev, “Random mappings of finite sets with a known number of components,” Teor. Veroyatnost. Primenen. 48 (4), 818–828 (2003) [Theory Probab. Appl. 48 (4), 741–751 (2003)].

    Article  MathSciNet  Google Scholar 

  24. I. A. Cheplyukova, “The limit distribution of the number of cyclic vertices in a random mapping in a special case,” Diskret.Mat. 16 (3), 76–84 (2004) [Discrete Math. Appl. 14 (4), 343–352 (2004)].

    Article  MathSciNet  Google Scholar 

  25. A. G. Postnikov, Introduction to Analytic Number Theory (Nauka, Moscow, 1971) [in Russian].

    MATH  Google Scholar 

  26. A. L. Yakymiv, “On the number of cyclic points of a random A-mapping,” Diskret. Mat. 25 (3), 116–127 (2013) [DiscreteMath. Appl. 23 (5–6), 503–515 (2013)].

    Article  Google Scholar 

  27. R. Arratia, A. D. Barbour, and S. Tavaré, Logarithmic Combinatorial Structures: A Probabilistic Approach, in EMS Monogr. Math. (European Math. Soc., Zürich, 2003).

    Book  Google Scholar 

  28. R. J. Riddell, Jr. and G. E. Uhlenbeck, “On the theory of the virial development of the equation of state of mono-atomic gases,” J. Chem. Phys. 21, 2056–2064 (1953).

    Article  MathSciNet  Google Scholar 

  29. L. Katz, “Probability of indecomposability of a random mapping function,” Ann. Math. Statist. 26 (3), 512–517 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  30. B. Bollobás, Random Graphs (Academic Press, London, 1985).

    MATH  Google Scholar 

  31. B. Bollobás, Random Graphs, in Cambridge Stud. Adv. Math., 2nd ed. (Cambridge University Press, Cambridge, 2001), Vol. 73.

  32. E. Seneta, Regularly Varying Functions (Springer-Verlag, Berlin–Heidelberg–New York, 1976; Nauka, Moscow, 1985).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Yakymiv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakymiv, A.L. On the number of components of fixed size in a random A-mapping. Math Notes 97, 468–475 (2015). https://doi.org/10.1134/S0001434615030177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434615030177

Keywords

Navigation