Skip to main content
Log in

The Kantorovich and variation distances between invariant measures of diffusions and nonlinear stationary Fokker-Planck-Kolmogorov equations

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We obtain upper bounds for the total variation distance and the quadratic Kantorovich distance between stationary distributions of two diffusion processes with different drifts. More generally, our estimate holds for solutions to stationary Kolmogorov equations in the class of probability measures. This estimate is applied to nonlinear stationary Fokker-Planck-Kolmogorov equations for probability measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows in Metric Spaces and in the Wasserstein Spaces of Probability Measures, 2nd ed. (Birkhäuser, Basel, 2008).

    Google Scholar 

  2. V. I. Bogachev and A. V. Kolesnikov, “The Monge-Kantorovich problem: achievements, connections, and perspectives,” Russian Math. Surveys 67(5), 785–890 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Bakry, P. Cattiaux, and A. Guillin, “Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré,” J. Funct. Anal. 254(3), 727–759 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Bolley, I. Gentil, and A. Guillin, “Uniform convergence to equilibrium for granular media,” Arch. Ration. Mech. Anal. 208(2), 429–445 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Bolley, I. Gentil, and A. Guillin, “Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations,” J. Funct. Anal. 263(8), 2430–2457 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Guillin, C. Léonard, L.-M. Wu, and N. Yao, “Transportation-information inequalities for Markov processes,” Probab. Theory Related Fields 144(3–4), 669–695 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Villani, Topics in Optimal Transportation (Amer. Math. Soc., Providence, RI, 2003).

    MATH  Google Scholar 

  8. V. I. Bogachev and M. Röckner, “A generalization of Khasminskii’s theorem on the existence of invariant measures for locally integrable drifts,” Teor. Veroyatnost. Primenen. 45(3), 417–436 (2000) [Theory Probab. Appl. 45 (3), 363–378 (2000); correction: ibid. 46:3, 600 (2001)].

    Article  Google Scholar 

  9. V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, “On positive and probability solutions of the stationary Fokker-Planck-Kolmogorov equation,” Dokl. Ross. Akad. Nauk 444(3), 245–249 (2012) [Dokl. Math. 85 (3), 350–354 (2012)].

    Google Scholar 

  10. V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, “On uniqueness problems related to elliptic equations for measures,” J. Math. Sci. 176(6), 759–773 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  11. V. I. Bogachev, A. I. Kirillov, and S. V. Shaposhnikov, “On probability and integrable solutions to the stationary Kolmogorov equation,” Dokl. Russian Acad. Sci. 438(2), 154–159 (2011) [Dokl. Math. 83 (3), 309–313 (2011)].

    MathSciNet  Google Scholar 

  12. V. I. Bogachev, N. V. Krylov, M. Röckner, and S. V. Shaposhnikov,, Fokker-Planck-Kolmogorov Equations (Institute of Computer Science, Moscow — Izhevsk, 2013) (in Russian).

    Google Scholar 

  13. V. I. Bogachev, N. V. Krylov, and M. Röckner, “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions,” Comm. Partial Diff. Eq. 26(11–12), 2037–2080 (2001).

    Article  MATH  Google Scholar 

  14. V. I. Bogachev and M. Röckner, “Regularity of invariant measures on finite and infinite dimensional spaces and applications,” J. Funct. Anal. 133(1), 168–223 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  15. V. I. Bogachev, M. Röckner, and F.-Y. Wang, “Elliptic equations for invariant measures on finite and infinite dimensional manifolds,” J. Math. Pures Appl. 80, 177–221 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Otto and C. Villani, “Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality,” J. Funct. Anal. 173(2) (2000), 361–400.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Bakry, I. Gentil, and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators (Springer, Berlin, 2013).

    Google Scholar 

  18. G. Royer, Initiation to Logarithmic Sobolev Inequalities (Amer. Math. Soc., Providence, RI, 2007).

    MATH  Google Scholar 

  19. F.-Yu. Wang, Functional Inequalities, Markov Semigroups and Spectral Theory (Elsevier, 2006).

    Google Scholar 

  20. V. I. Bogachev, Measure Theory (Springer, New York, 2007), Vols. 1 and 2.

    Book  MATH  Google Scholar 

  21. F. Bolley and C. Villani, “Weighted Csiszar-Kullback-Pinsker inequalities and applications to transportation inequalities,” Ann. Fac. Sci. Toulouse 14(3), 331–352 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  22. L.G. Tonoyan, “Nonlinear elliptic equations for measures,” Dokl. Ross. Akad. Nauk 439(2), 174–177 (2011) [Dokl. Math. 84 (1), 558–561 (2011)].

    MathSciNet  Google Scholar 

  23. M. Röckner and F.-Y. Wang, “Supercontractivity and ultracontractivity for (non-symmetric) diffusion semigroups on manifolds,” Forum Math. 15(6), 893–921 (2003).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bogachev.

Additional information

The article was submitted by the authors for the English version of the journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogachev, V.I., Kirillov, A.I. & Shaposhnikov, S.V. The Kantorovich and variation distances between invariant measures of diffusions and nonlinear stationary Fokker-Planck-Kolmogorov equations. Math Notes 96, 855–863 (2014). https://doi.org/10.1134/S0001434614110224

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434614110224

Keywords

Navigation