Skip to main content
Log in

Arctic Sea Ice in the Light of Current and Past Climate Changes

  • SEA, RIVER AND LAKE ICE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Space observations (1979–2020) have shown that, over the past 40 years, years with a decrease in the area of summer ice and their thickness prevailed. Over 10 years, negative trends of anomalies in the area and thickness of the ice are –13 and –15%, respectively. A rapid reduction in the area of old ice (>4-year-old) is also noted, because in 1985 it was estimated at 2.7 million km2, while in March 2010 it was 0.34 million km2. The paper analyses paleo sea ice extent during the Holocene (the last 12 000 years) based on empirical IP25 biomarkers (a sea ice proxy with 25 carbon atoms synthesized by the specific Arctic sea ice diatoms Hasleaspp, which have been proven to be a suitable proxy for paleo-sea ice reconstructions) obtained from deep-sea cores from the North Atlantic. The data showed that, during the warm periods of the Early and Middle Holocene, the area of summer sea ice was reduced to a minimum. This confirms the conclusion made earlier in (Kinnard et al., 2011) that the current trend of reducing the area and thickness of ice is unprecedented over the past 1500 years. There is no complete analogue of the climate in the past corresponding to the current level of the CO2 concentration in the atmosphere. The period with CO2 concentrations in the atmosphere similar to the current level was the warm part of the Middle Pliocene between 3 and 4 million years ago with level of the CO2 concentration 450–500 ppm against approximately 420 ppm at present. Paleo-climate reconstructions for this period estimate the global temperature to be 3.0–3.5 ± 0.5°C higher than at the end of the 19th century. Summer air temperatures in the high latitudes of the Northern Hemisphere exceeded the current ones by 8–10°C, and the sea ice in the Arctic shelf seas was completely absent in the summer. Empirical data and model simulations have shown that presently the main driver of the reduction of the Arctic sea ice area is the increase in concentration of CO2 in the atmosphere. At the present time, old sea ice tends to be replaced by seasonal ice, demonstrating a natural shift from the predominance of permanent ice to an ice-free Arctic. In the case of a continuous increase in CO2 concentration in the atmosphere despite emission control measures, one of the scenarios that happened in the past may occur again.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Belt, S.T., Smik, L., Köseoğlu, D., Knies, J., and Husumd, K., A novel biomarker-based proxy for the spring phytoplankton bloom in Arctic and sub-arctic settings – HBI T25, Earth Planet. Sci. Lett., 2019, vol. 523, p. 115703.

    Article  Google Scholar 

  2. Berger, M., Brandefelt, J., and Nilsson, J., The sensitivity of the Arctic sea ice to orbitally induced insolation changes: A study of the mid-Holocene Paleoclimate Modelling Intercomparison Project 2 and 3 simulations, Clim. Past, 2013, vol. 9, pp. 969–982.

    Article  Google Scholar 

  3. Bobylev, L.P. and Miles, M.W., Sea ice in the Arctic paleoenvironments, in Sea Ice in the Arctic. Past, Present and Future, Johannessen, O.M., et al., Eds., Springer, 2020. https://doi.org/10.1007/978-3-030-21301.

  4. Borzenkova, I.I., Izmenenie klimata v kainozoe (Climate Change in the Cenozoic), St. Petersburg: Gidrometeoizdat, 1992.

  5. Borzenkova, I.I., Glaciation history of the Arctic basin: A look from the past to assess possible changes in the future, Led Sneg, 2016, vol. 56, no. 2, pp. 221–234.

    Google Scholar 

  6. Borzenkova, I.I., Borisova, O.K., Zhiltsova, E.L., and Sapelko, T.V., Cold episode 8,200 years ago in Northern Europe: An analysis of empirical evidence amd possible causes, Led Sneg, 2017, vol. 57, no. 1, pp. 117–132.

    Google Scholar 

  7. Brigham-Grette, J., Hopkins, D., Ivanov, V., Basilyan, A., Benson, S., Heiser, P., and Pushkar, V., Last interglacial (isotope stage 5) glacial and sea-level history of coastal Chukotka Peninsula and St. Lawrence Island, western Beringia, Quat. Sci. Rev., 2001, vol. 20, pp. 419–436.

    Article  Google Scholar 

  8. Budyko, M.I., Evolyutsiya biosfery (Evolution of the Biosphere), Leningrad: Gidrometeoizdat, 1984.

  9. Cabedo-Sanz, P. and Belt, S.T., Seasonal sea ice variability in eastern Fram Strait over the last 2000 years, Arktos, 2016, vol. 2, no. 22. https://doi.org/s41063-016-0023-2.

  10. Caesar, L., McCarthy, G.D., Thornalley, D.J.R., Cahill, N., and Rahmstorf, S., Current Atlantic Meridional Overturning Circulation weakest in last millennium, Nat. Geosci., 2021, vol. 14, pp. 118–120. https://www.nature. com/naturegeoscience.

    Article  Google Scholar 

  11. CryoSAT-2. https://www.cpom.ucl.ac.uk/csopr/data.html. Accessed October 27, 2020.

  12. Cui, Y., Brian, A., Schubert, B.A., and Hope Jahren, A.H., A 23 m.y. record of low atmospheric CO2, Geology, 2020, vol. 48, no. 9, pp. 888–892. https://doi.org/10.1130/G47681.1

    Article  Google Scholar 

  13. de Nooijer, W., Zhang, Q., Li, Q., Zhang, Q., Li, X., Zhang, Z., Guo, C., Nisancioglu, K.H., et al., Evaluation of Arctic warming in mid-Pliocene climate simulations, Clim. Past, 2020, vol. 16, pp. 2325–2341. https://doi.org/10.5194/cp-16-2325-2020

    Article  Google Scholar 

  14. Fetterer, F., Knowles, K., Meier, W.N., Savoie, M., and Windnage, A.K., Sea Ice Index, Version 3. Boulder, Colo.: National Snow and Ice Data Center, 2017. https://doi.org/10.7265/N5K072F8. ftp://ftp.ngdc. noaa.gov/paleo/icecore/greenland/su.

  15. Funder, S., Goosse, H., Jepsen, H., Kaas, E., Kjær, K.H., Korsgaard, N.J., Larsen, N.K., Linderson, H., Lyså, A., Möller, P., Olsen, J., and Willerslev, E.A., 10,000-year period of Arctic Ocean sea-ice variability-view from the beach, Science, 2011, vol. 333, pp. 747–750. https://doi.org/10.1126/science.1202760

    Article  Google Scholar 

  16. Grachev, A.M. and Severinghaus, J.P., A revised +10±4°C magnitude of the abrupt change in Greenland temperature at the Younger Dryas termination using published GISP2 gas isotope data and air thermal diffusion constants, Quat. Sci. Rev., 2005, vol. 4, pp. 513–519. https://www1.ncdc.noaa.gov/pub/data/paleo/treering/.

    Article  Google Scholar 

  17. IPCC, 2018. Special Report on Global Warming of 1.5 °C, SR15. http://www.ipcc.ch/report/sr15/.

  18. Jakobsson, M., Long, A., Ingólfsson, O., Kjær, K.H., and Spielhagen, R.F., New insights on Arctic quaternary climate variability from paleo-records and numerical modelling, Quat. Sci. Rev., 2010, vol. 29, pp. 3349–3358.

    Article  Google Scholar 

  19. Johannessen, O.M., Decreasing Arctic sea ice mirrors increasing CO2 on decadal time scale, Atmos. Ocean. Sci. Lett., 2008, no. 1, pp. 51–56.

  20. Kienast, F., Wetterich, S., Kuzmina, S., Schirrmeister, L., Andreev, A.A., Tarasov, P., Nazarova, L., Kossler, A., Frolova, L., and Kunitsky, V.V., Paleontological records indicate the occurrence of open woodlands in a dry inland climate at the present-day Arctic coast in western Beringia during the Last Interglacial, Quat. Sci. Rev., 2011, vol. 30, pp. 2134–2159.

    Article  Google Scholar 

  21. Kinnard, C., Zdanowicz, C.M., Fisher, D.A., Isaksson, E., de Vernal, A., and Thompson, L.G., Reconstructed changes in Arctic sea ice over the past 1,450 years, Nature, 2011, vol. 479, pp. 509–512. https://doi.org/10.1038/nature10581

    Article  Google Scholar 

  22. Kwok, R., Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018), Environ. Res. Lett., 2018, vol. 13, p. 105005. https://doi.org/10.1088/1748-9326/aae3ec

    Article  Google Scholar 

  23. Laxon, S.W., Giles, K.A., Ridout, A.L., Wingham, D.J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M., CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophys. Res. Lett., 2013, vol. 40, pp. 732–737. https://doi.org/10.1002/grl.50193

    Article  Google Scholar 

  24. Macias Fauria, M., Grinsted, A., Helama, S., Moore, J., Timonen, M., Martma, T., Isaksson, E., and Eronen, M., Unprecedented low twentieth century winter sea ice extent in the Western Nordic seas since AD 1200, Clim. Dyn., 2009, vol. 34, pp. 781–795.

    Article  Google Scholar 

  25. McFarlin, J.M., Axford, Y., Osburn, M.R., Kelly, M.A., Osterberg, E.C., and Farnsworth, L.B., Pronounced summer warming in northwest Greenland during the Holocene and Last Interglacial, Proc. Natl. Acad. Sci., 2018, 2018, p. 1720420115. https://doi.org/10.1073/pnas.1720420115

    Article  Google Scholar 

  26. Meleshko, V.P., Pavlova, N., Bobylev, L., and Golubkin, P., Current and projected sea ice in the Arctic in the twenty-first century, in Sea Ice in the Arctic. Past, Present and Future, Johannessen, O.M., , Eds., Springer, 2020.

    Google Scholar 

  27. Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M., and Karlen, W., Northern Hemisphere annual temperatures from low- and high-resolution proxy data over the last 2000 years, Nature, 2005, vol. 433, no. 7026, pp. 613–617.

    Article  Google Scholar 

  28. Möller, P., Alexanderson, H., Funder, S., and Hjort, C., The Taimyr Peninsula and the Severnaya Zemlya archipelago, Arctic Russia: A synthesis of glacial history and paleo-environmental change during the Last Glacial cycle (MIS 5e-2), Quat. Sci. Rev., 2015, vol. 107, pp. 149–181.

    Article  Google Scholar 

  29. Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., and Lohmann, G., Towards quantitative sea ice reconstructions in the northern North Atlantic: A combined biomarker and numerical modelling approach, Earth Planet Sci. Lett., 2011, vol. 306, pp. 137–148.

    Article  Google Scholar 

  30. National Snow and Ice Data Center. https://doi.org/. Accessed October 13, 2020.https://doi.org/10.7265/N5K072F8.NSIDC

  31. NEEM Community Members, Eemian interglacial reconstructed from a Greenland folded ice core, Nature, 2013, vol. 493, pp. 489–494.

  32. NOAA Arctic Report Card. https://www.arctic.noaa.gov/ Report.

  33. NOAA/NCEI NOAA Global Temperature v5. https://www.ncei.noaa.gov/data/noaa-globalsurface-temperature/v5/access/timeseries. Accessed October 20, 2020.

  34. Notz, D. et al. (SIMIP Community), Arctic sea ice in CMIP6, Geophys. Res. Lett., 2020, vol. 47, p. e2019GL086749. https://doi.org/10.1029/2019GL086749

  35. Overland, J., Dunle, E., Box, J.E., Corell, R., Forsius, M., Kattsov, V., Olsen, M.S., Pawlak, J., Reiersen, L.-O., and Wang, M., The urgency of Arctic change, Polar Sci., 2019, vol. 21, pp. 6–13.

    Article  Google Scholar 

  36. Paleoklimat polyarnykh oblastei Zemli v golotsene (Paleoclimate of the Polar Regions of the Earth in the Holocene), Bol’shiyanov, D.Y. and Verkulich, S.R., Eds., St. Petersburg: AARI, 2019.

  37. PIOMAS. https://pscfiles.apl.washington.edu/zhang/ P-IOMAS/ data/v2.1. Accessed October 27, 2020.

  38. Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S.J., Fischer, H., Seierstad, I.K., Steffensen, J.P., Anders, M., Svensson, A.M., Vallelonga, P., et al., A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy, Quat. Sci. Rev., 2014, vol. 106, pp. 14–28.

    Article  Google Scholar 

  39. Saini, J., Stein, R., Fahl, K., Weiser, J., Hebbeln, D., Hillaire-Marcel, C., and de Vernal, A., Holocene variability in sea ice and primary productivity in the northeastern Baffin Bay, Arktos, 2020. https://doi.org/10.1007/s41063-020-00075-y.

  40. Screen, J.A., Arctic sea ice at 1.5 and 2°C, Nat. Clim. Change, 2018, vol. 8, pp. 360–369.

    Article  Google Scholar 

  41. Sea Ice in the Arctic: Past, Present and Future, Johannessen, O.M., et al., Eds., Springer, 2020. https://doi.org/10.1007/978-3-030-21301.

  42. Semenov, V.A., Martin, T., Berens, L.K., Latif, M., and Astaf’eva, E.S., Changes in the area of Arctic sea ice in the ensembles of climate models CMIP3 and CMIP5, Led Sneg, 2017, vol. 57, no. 1, pp. 77–107.

    Google Scholar 

  43. Sévellec, F., Fedorov, A.V., and Liu, W., Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation, Nat. Clim. Change, 2017, vol. 7, pp. 604–610.

    Article  Google Scholar 

  44. Stein, R., Fahl, K., Gierz, P., Niessen, F., and Lohmann, G., Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial, Nat. Commun., 2017, vol. 8, p. 373.

    Article  Google Scholar 

  45. Stranne, C., Jakobsson, M., and Björk, G., Arctic Ocean perennial sea ice breakdown during the Early Holocene insolation maximum, Quat. Sci. Rev., 2014, vol. 92, pp. 123–132.

    Article  Google Scholar 

  46. Stroeve, J. and Notz, D., Changing state of Arctic sea ice across all seasons, Environ. Res. Lett., 2018, vol. 13, p. 103001. https://doi.org/10.1088/1748-9326/aade56

    Article  Google Scholar 

  47. UNFCCC2015 Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1. https://unfccc.int/resource/ docs/2015/cop21/eng/l09r01.pdf.

  48. Vare, L.L., Massé, G., and Belt, S.T., A biomarker-based reconstruction of sea ice conditions for the Barents Sea in recent centuries, Holocene, 2010, vol. 20, pp. 637–643.

    Article  Google Scholar 

  49. Zachary, L., Gudrun, M., and Hal, S., Variability of Arctic sea ice thickness using PIOMAS and the CESM large ensemble, J. Clim., 2018, vol. 31, pp. 3233–3247. https://doi.org/10.1175/JCLI-D-17-0436.1.

  50. Zhang, J., Hibler, W.D., Steele, M., and Rothrock, D.A., Arctic ice-ocean modeling with and without climate restoring, J. Phys. Oceanogr., 1998, vol. 28, pp. 191–217. https://doi.org/10.1175/1520-0485

    Article  Google Scholar 

  51. Zhang, Q., Xiao, C., Ding, M., and Dou, T., Reconstruction of autumn sea ice extent changes since AD1289 in the Barents–Kara Sea, Arctic, Sci. China: Earth Sci., 2018, vol. 61, pp. 1279–1291.

    Article  Google Scholar 

Download references

Funding

This study was supported by Russian Foundation For Basic Research, grant no. 18-05-60005 “Ecosystems and Ecosystem Services in the Russian Arctic Regions in the Context of Climate Adaptation Strategies and Sustainable Development.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Borzenkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzenkova, I.I., Ershova, A.A., Zhiltsova, E.L. et al. Arctic Sea Ice in the Light of Current and Past Climate Changes. Izv. Atmos. Ocean. Phys. 59 (Suppl 1), S35–S46 (2023). https://doi.org/10.1134/S0001433823130042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823130042

Keywords:

Navigation