Skip to main content

Advertisement

Log in

Strong Wildfires in the Russian Federation in 2021 Detected Using Satellite Data

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING CATASTROPHIC NATURAL PROCESSES FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

On the basis of satellite monitoring data, the features of large natural fires and the volumes of CO, CO2, and PM2.5 emissions caused by them on the territory of Russian Federation and in its individual regions from April to October 2001–2021 have been studied. It has been found that, in July and August 2021, the average monthly values of the areas covered by fire throughout Russia exceeded by 25 000 and 24 500 km2 similar values recorded in these months for the period from 2001 to 2020. Excess values of the areas covered by fire in the territory of large regions in 2021 compared to 2020 were revealed: in April in the European part of Russia (by 2100 km2), in May in the Ural Federal District (by 6700 km2), in the Siberian Federal District (by 8400 km2), and in July and August in the Far Eastern Federal District (by 18 400 and 27 000 km2, respectively). It has been found that, in certain months of 2021, an increase in the contribution of emissions caused by natural fires in the territories of these regions to the total emissions in the country reached 44.9% when compared to 2020. Using satellite data, an analysis was carried out of changes in the gas composition of the atmosphere during the period of strong fires in the Republic of Sakha (Yakutia) in July 2021, which revealed areas of anomalously high CO and CH4 concentrations and an increase in the aerosol index (AI) from 1.4 to 3.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bondur V.G. Satellite Monitoring of Wildfires during the Anomalous Heat Wave of 2010 in Russia, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1039–1048. https://doi.org/10.1134/S0001433811090040

  2. Bondur, V.G., Satellite monitoring of trace gas and aerosol emissions during wildfires in Russia, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 9, pp. 1078–1091. https://doi.org/10.1134/S0001433816090103

    Article  Google Scholar 

  3. Bondur, V.G. and Ginzburg, A.S., Emission of carbon-bearing gases and aerosols from natural fires on the territory of Russia based on space monitoring, Dokl. Earth Sci., 2016, vol. 466, no. 2, pp. 148–152. https://doi.org/10.1134/S1028334X16020045

    Article  Google Scholar 

  4. Bondur, V.G. and Gordo, K.A., Satellite monitoring of burnt-out areas and emissions of harmful contaminants due to forest and other wildfires in Russia, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 9, pp. 955–965. https://doi.org/10.1134/S0001433818090104

    Article  Google Scholar 

  5. Bondur, V.G., Gordo, K.A., and Kladov, V.L., Spacetime distributions of wildfire areas and emissions of carbon-containing gases and aerosols in Northern Eurasia according to satellite-monitoring data, Izv., Atmos. Ocean. Phys., 2016, vol. 53, no. 9, pp. 859–874. https://doi.org/10.1134/S0001433817090055

    Article  Google Scholar 

  6. Bondur, V.G., Tsidilina, M.N., Kladov, V.L., and Gordo, K.A., Irregular variability of spatiotemporal distributions of wildfires and emissions of harmful trace gases in Europe based on satellite monitoring data, Dokl. Earth Sci., 2019a, vol. 485, pp. 461–464. https://doi.org/10.1134/S1028334X19040202

    Article  Google Scholar 

  7. Bondur, V.G., Tsidilina, M.N., and Cherepanova, E.V., Satellite monitoring of wildfire impacts on the conditions of various types of vegetation cover in the federal districts of the Russian Federation, Izv., Atmos. Ocean. Phys., 2019b, vol. 55, no. 9, pp. 1238–1253. https://doi.org/10.1134/S000143381909010X

    Article  Google Scholar 

  8. Bondur, V.G., Voronova, O.S., Cherepanova, E.V., Tsidilina, M.N., and Zima, A.L., Spatiotemporal analysis of multi-year wildfires and emissions of trace gases and aerosols in Russia based on satellite data, Izv., Atmos. Ocean. Phys., 2020a, vol. 56, no. 9, pp. 1457–1469. https://doi.org/10.1134/S0001433820120348

    Article  Google Scholar 

  9. Bondur, V.G., Mokhov, I.I., Voronova, O.S., and Sitnov, S.A., Satellite monitoring of Siberian wildfires and their effects: Features of 2019 anomalies and trends of 20-year changes, Dokl. Earth Sci., 2020b, vol. 492, no. 1, pp. 370–375. https://doi.org/10.1134/S1028334X20050049

    Article  Google Scholar 

  10. Bondur, V.G., Voronova, O.S., Gordo, K.A., Zima, A.L., and Feoktistova, N.V., Satellite monitoring of multiyear wildfires and related emissions of harmful trace gases into the air environment of Australia, Izv., Atmos. Ocean. Phys., 2021a, vol. 57, no. 9, pp. 1029–1041. https://doi.org/10.1134/S0001433821090449

    Article  Google Scholar 

  11. Bondur, V.G., Voronova, O.S., Gordo, K.A., and Zima, A.L., Satellite monitoring of the variability of wildfire areas and emissions of harmful gas components into the atmosphere for various regions of Russia over a 20-year period, Dokl. Earth Sci., 2021b, vol. 500, pp. 890–894. https://doi.org/10.1134/S1028334X21100044

    Article  Google Scholar 

  12. Bondur, V.G., Gordo, K.A., Voronova, O.S., and Zima, A.L., Satellite monitoring of anomalous wildfires in Australia, Front. Earth Sci., 2021c, vol. 8, id 617252. https://doi.org/10.3389/feart.2020.617252

  13. Bowman, K. and Henze, D.K., Attribution of direct ozone radiative forcing to spatially resolved emissions, Geophys. Res. Lett., 2012, vol. 39, no. 22, L22704. https://doi.org/10.1029/2012GL053274

    Article  Google Scholar 

  14. Bradstock, R., Davies, I., Price, O., and Cary, G., Effects of climate change on bushfire threats to biodiversity, ecosystem processes and people in the Sydney: region, Final Report to the New South Wales Department of Environment and Climate Change: Climate Change Impacts and Adaptation Research Project 50831, 2008.

  15. Buchholz, R.R., Worden, H.M., Park, M., Francis, G., Deeter, M.N., Edwards, D.P., and Kulawik, S.S., Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions, Remote Sens. Environ., 2021, vol. 256, 112275. https://doi.org/10.1016/j.rse.2020.112275

    Article  Google Scholar 

  16. Certini, G., Effects of fire on properties of forest soils: A review, Oecologia, 2005, vol. 143, pp. 1–10. https://doi.org/10.1007/s00442-004-1788-8

    Article  Google Scholar 

  17. Cherepanova, E.V., Feoktistova, N.V., and Chudakova, M.A., Analysis of methane concentration anomalies over burned areas of the boreal and Arctic zone of Eastern Siberia in 2018–2019 using TROPOMI data, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 12, pp. 1470–1481. https://doi.org/10.1134/S0001433820120385

    Article  Google Scholar 

  18. Crockett, J.L. and Leroy Westerling, A., Greater temperature and precipitation extremes intensify Western U.S. droughts, wildfire severity, and Sierra Nevada tree mortality, J. Clim., 2018, vol. 31, pp. 341–354. https://doi.org/10.1175/JCLI-D-17-0254.1

    Article  Google Scholar 

  19. Ding, K., Liu, J., Ding, A., Liu, Q., Zhao, T.L., Shi, J., Han, Y., Wang, H., and Jiang, F., Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia, Atmos. Chem. Phys., 2015, vol. 15, pp. 2843–2866. https://doi.org/10.5194/acp-15-2843-2015

    Article  Google Scholar 

  20. Doklad o klimaticheskikh riskakh na territorii Rossiiskoi Federatsii (Report on Climatic Risks in the Russian Federation), Petersburg: Klimaticheskii tsentr Rosgidrometa, 2017.

  21. Edwards, D.P., Emmons, L.K., Hauglustaine, D.A., Chu, D.A., Gille, J.C., and Kaufman, Y.J., Pétron, G., Yurgano, L.N., Giglio, V.L., Deeter, M.N., Yudi, V., Ziskin, N.D.C., Warner, J., Lamarque, J.-F., Francis, G.L., et al., Observations of carbon monoxide and aerosols from the terra satellite: Northern Hemisphere variability, J. Geophys. Res.: Atmos., 2004, vol. 109, no. D24. https://doi.org/10.1029/2004JD004727

  22. Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X., MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 2010, vol. 114, pp. 168–182.

    Article  Google Scholar 

  23. Froitzheim, N., Majka, J., and Zastrozhnov, D., Methane release from carbonate rock formations in the Siberian permafrost area during and after the 2020 heat wave, Proc. Natl. Acad. Sci., 2021, vol. 118, no. 32, e2107632118. https://doi.org/10.1073/pnas.2107632118

    Article  Google Scholar 

  24. Giglio, L., Schroeder, W., and Justice, C.O., The collection 6 MODIS active fire detection algorithm and fire products, Remote Sens. Environ., 2016, vol. 178, pp. 31–41. https://doi.org/10.1071/WF03054

    Article  Google Scholar 

  25. He, Y., Chen, F., Jia, H., Wang, L., and Bondur, V.G., Different drought legacies of rain-fed and irrigated croplands in a typical Russian agricultural region, Remote Sens., 2020, vol. 12, no. 11, p. 1700. https://doi.org/10.3390/rs12111700

    Article  Google Scholar 

  26. Holloway, T., Levy, H. II, and Kasibhatla, P., Global distribution of carbon monoxide, J. Geophys. Res., 2000, vol. 105, no. D10, pp. 12123–12147. https://doi.org/10.1029/1999JD901173

    Article  Google Scholar 

  27. Jolly, W.M., Cochrane, M.A., Freeborn, P.H., Holden, Z.A., Brown, T.J., Williamson, G.J., and Bowman, D.M.J.S., Climate-induced variations in global wildfire danger from 1979 to 2013, Nat. Commun., 2015, vol. 6, pp. 1–11. https://doi.org/10.1038/ncomms8537

    Article  Google Scholar 

  28. Kulmala, M., Lappalainen, H.K., Petäjä, T., Kurten, T., Kerminen, V.-M., Viisanen, Y., Hari, P., Sorvari, S., Bäck, J., Bondur, V., Kasimov, N., Kotlyakov, V., Matvienko, G., Baklanov, A., Guo, H.D., et al., Introduction: The Pan-Eurasian Experiment (PEEX)—multidisciplinary, multiscale and multicomponent research and capacity-building initiative, Atmos. Chem. Phys., 2015, vol. 15, pp. 13085–13096. https://doi.org/10.5194/acp-15-13085-2015

    Article  Google Scholar 

  29. Kulmala, M., Lappalainen, H.K., Petäjä, T., Kerminen, V.-M., Viisanen, Y., Matvienko, G., Melnikov, V., Baklanov, A., Bondur, V., Kasimov, N., and Zilitinkevich, S., Pan-Eurasian Experiment (PEEX) Program: Grand challenges in the Arctic-Boreal context, Geogr. Environ. Sustainability, 2016, vol. 9, no. 2, pp. 5–18. https://doi.org/10.15356/2071-9388_02v09_2016_01

    Article  Google Scholar 

  30. Lappalainen, H.K., Kerminen, V.-M., Petäjä, T., Kurten, T., Baklanov, A., Shvidenko, A., Bäck, J., Vihma, T., Alekseychik, P., Andreae, M.O., Arnold, S.R., Arshinov, M., Asmi, E., Belan, B., Bobylev, L., et al., Pan-Eurasian Experiment (PEEX): Towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the Northern Eurasian region, Atmos. Chem. Phys., 2016, vol. 16, pp. 14421–14461. https://doi.org/10.5194/acp-16-14421-2016

    Article  Google Scholar 

  31. Lappalainen, H.K., Petäjä, T., Vihma, R., Räisänen, J., Baklanov, A., Chalov, S., Esau, I., Ezhova, E., Leppäranta, M., Pozdnyakov, D., Pumpanen, J., Andreae, M.O., Arshinov, M., Asmi, E., Bai, J., et al., Overview: Recent advances on the understanding of the Northern Eurasian environments and of the urban air quality in China—Pan Eurasian Experiment (PEEX) program perspective, Prep. Atmos. Chem. Phys., 2021, ACP-2021–341. https://doi.org/10.5194/acp-2021-341

  32. Lelieveld, J., Gromov, S., Pozzer, A., and Taraborrelli, D., Global tropospheric hydroxyl distribution, budget and reactivity, Atmos. Chem. Phys., 2016, vol. 16, pp. 12477–12493. https://doi.org/10.5194/acp-16-12477-2016

    Article  Google Scholar 

  33. Li, K., Jacob, D.J., Liao, H., Shen, L., Zhang, Q., and Bates, K., H anthropogenic drivers of 2013–2017 trends in summer surface ozone in China, Proc. Natl. Acad. Sci. U.S.A., 2019, vol. 116, pp. 422–427. https://doi.org/10.1073/pnas.1812168116

    Article  Google Scholar 

  34. Liu, W., Lu, F., Luo, Y., et al., Human influence on the temporal dynamics and spatial distribution of forest biomass carbon in China, Ecol. Evol., vol. 7, pp. 6220–6230. https://doi.org/10.1002/ece3.3188

  35. Liu, Y., Stanturf, J., and Goodrick, S., Trends in global wildfire potential in a changing climate, For. Ecol. Manage., 2010, vol. 259, pp. 685–697. https://doi.org/10.1016/j.foreco.2009.09.002

    Article  Google Scholar 

  36. McClure, C.D. and Jaffe, D.A., US particulate matter air quality improves except in wildfire-prone areas, Proc. Natl. Acad. Sci. U.S.A., 2018, vol. 115, no. 31, pp. 7901–7906. https://doi.org/10.1073/pnas.1804353115

    Article  Google Scholar 

  37. Mokhov, I.I., Semenov, V.A., and Khon, V.Ch., Estimates of possible regional hydrologic regime changes in the 21st century based on global climate models, Izv., Atmos. Ocean. Phys., 2003, vol. 39, no. 2, pp. 130–144.

    Google Scholar 

  38. Mokhov, I.I., Chernokulsky, A.V., and Shkolnik, I.M., Regional model assessments of fire risks under global climate changes, Dokl. Akad. Nauk, 2006, vol. 411, no. 6, pp. 1485–1488.

    Google Scholar 

  39. Mokhov, I.I., Bondur, V.G., Sitnov, S.A., and Voronova, O.S., Satellite monitoring of wildfires and emissions into the atmosphere of combustion products in Russia: relation to atmospheric blockings, Dokl. Earth Sci., 2020, vol. 495, no. 2, pp. 921–924. https://doi.org/10.1134/S1028334X20120089

    Article  Google Scholar 

  40. Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Narita, D., et al., Impacts and management of forest fires in the Republic of Sakha, Russia: A local perspective for a global problem, Polar Sci., 2020, p. 100573. https://doi.org/10.1016/j.polar.2020.100573

  41. Pellegrini, A., Ahlström, A., Hobbie, S., et al., Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity, Nature, 2018, vol. 553, pp. 194–198. https://doi.org/10.1038/nature24668

    Article  Google Scholar 

  42. Prather, M.J., Lifetimes and time scales in atmospheric chemistry, Philos. Trans. R. Soc. A, 2007, vol. 365, pp. 1705–1726. https://doi.org/10.1098/rsta.2007.2040

    Article  Google Scholar 

  43. Ramanathan, V. and Carmichael, G., Global and regional climate changes due to black carbon, Nat. Geosci., 2008, vol. 1, pp. 221–227. https://doi.org/10.1038/ngeo156

    Article  Google Scholar 

  44. Seiler, W. and Crutzen, P.J., Estimates of gross and net fluxes of carbon between the biosphere and atmosphere from biomass burning, Clim. Change, 1980, vol. 2, no. 3, pp. 207–247.

    Article  Google Scholar 

  45. Shirazi, Z., Wang, L., and Bondur, V.G., Modeling conditions appropriate for wildfire in South East China: A machine learning approach, Front. Earth Sci., 2021, vol. 9, 622307. https://doi.org/10.3389/feart.2021.622307

    Article  Google Scholar 

  46. Tian, B., Manning, E., Fetzer, E.J., Olsen, E., Wong, S., Susskind, J., and Iredell, L., AIRS/AMSU/HSB version 6 level 3 product user guide, NASA JPL Tech. Rep. https://disc.sci.gsfc.nasa.gov/AIRS/documentation/ v6_docs/v6releasedocs-1/V6_L3_User_Guide.pdf.

  47. Tomshin, O.A. and Solovyev, V.S., Aerosol index variations caused by severe forest fires in Siberia, in 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Novosibirsk, 2014, 92922R. https://doi.org/10.1117/12.2074610.

  48. Trauernicht, C., Vegetation–rainfall interactions reveal how climate variability and climate change alter spatial patterns of wildland fire probability on Big Island, Hawaii, Sci. Total Environ., 2019, vol. 650, part 1, pp. 459–469. https://doi.org/10.1016/j.scitotenv.2018.08.347

    Article  Google Scholar 

  49. Voronova, O.S., Gordo, K.A., and Zima, A.L., Studying the dynamics of wildfires in Russia in 2001–2020 taking into account climatic factors, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 12, pp. 1720–1731. https://doi.org/10.1134/S0001433821120239

    Article  Google Scholar 

  50. Zhong, S., Yu, L., Heilman, W.E., et al., Synoptic weather patterns for large wildfires in the Northwestern United States: A climatological analysis using three classification methods, Theor. Appl. Climatol., 2020, pp. 141, pp. 1057–1073. https://doi.org/10.1007/s00704-020-03235-y

  51. Zweers, D.C.S., Algorithm theoretical baseline document for Sentinel-5 precursor of the UV aerosol index, SRON, 2018.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Academician of the Russian Academy of Sciences V.G. Bondur for scientific guidance, useful discussions, and advice during research.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2020-776.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Voronova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronova, O.S., Gordo, K.A., Zima, A.L. et al. Strong Wildfires in the Russian Federation in 2021 Detected Using Satellite Data. Izv. Atmos. Ocean. Phys. 58, 1065–1076 (2022). https://doi.org/10.1134/S0001433822090225

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822090225

Keywords:

Navigation