Skip to main content
Log in

Short-Period Internal Waves in Shelf Regions with Intense Tidal Dynamics

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

We compare characteristics of short-period internal waves and the mechanisms of their generation in the southwestern part of the Barents Sea and in Avacha Bay of the Pacific Ocean based on in situ data, satellite observations, together with results of a modern global barotropic tidal model. According to in situ data, in the Barents Sea, weakly nonlinear short-period oscillations with a maximum amplitude of 4 m dominate in the region of alternating features of the bottom topography with a mean depth of about 100 m. In Avacha Bay, with a narrow shallow shelf and steep continental slope, strongly nonlinear intense internal waves with amplitudes reaching 8 m are recorded against the background of semidiurnal internal waves. It is found from the satellite data that larger wave trains of surface manifestations of short-period waves are recorded in the Barents Sea when compared to Avacha Bay, both in wavelength and along the length of the leading crest. The directions of propagation of wave manifestations in the studied regions are characterized by a narrow range of variations, which may indicate the dominance of one generation mechanism. An analysis of the TPXO9 atlas data has revealed the similarity of the spatial structure of the semidiurnal tidal waves in the Barents Sea and Avacha Bay, but the maximum speed of tidal currents in the Barents Sea is higher more by factor of three than in Avacha Bay. An assessment of the internal tide generation criteria has made it possible to reveal that the short-period internal waves in the Barents sea are generated at breaking of lee waves in the vicinity of the in situ observation place. In contrast, internal waves in Avacha Bay are caused by the disintergation of internal tide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. A. Merrifield, P. E. Holloway, and T. M. Johnston, “The generation of internal tides at the Hawaiian Ridge,” Geophys. Res. Lett. 28 (4), 559–562 (2001).

    Article  Google Scholar 

  2. S. M. Jachec, O. B. Fringer, M. Gerritsen, and R. L. Street “Numerical simulation of internal tides and the resulting energetics within Monterey Bay and the surrounding area,” Geophys. Res. Lett. 33, L12605 (2006).

    Article  Google Scholar 

  3. M. H. Alford, J. A. MacKinnon, Z. Zhao, R. Pinkel, J. M. Klymak, and T. Peacock, “Internal waves across the Pacific,” Geophys. Res. Lett. 34, L24601 (2007).

    Article  Google Scholar 

  4. X. Xie, Y. Cuypers, P. Bouruet-Aubertot, B. Ferron, A. Pichon, A. Lourenco, and N. Cortes, “Large-amplitude internal tides, solitary waves, and turbulence in the central Bay of Biscay,” Geophys. Res. Lett. 40, 2748–2754 (2013).

    Article  Google Scholar 

  5. M. P. Subeesh, A. S. Unnikrishnan, and P. A. Francis, “Generation, propagation and dissipation of internal tides on the continental shelf and slope off the west coast of India,” Cont. Shelf Res. 214, 104321 (2021).

    Article  Google Scholar 

  6. A. Purwandana, Y. Cuypers, and P. Bouruet-Aubertot, “Observation of internal tides, nonlinear internal waves and mixing in the Lombok Strait, Indonesia,” Cont. Shelf Res. 216, 104358 (2021).

    Article  Google Scholar 

  7. K. V. Konyaev and K. D. Sabinin, Waves Inside the Ocean (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  8. K. D. Sabinin, A. N. Serebryanyi, and A. A. Nazarov, “Intensive internal waves in the World Ocean,” Oceanology, 44 (6), 753–758 (2004).

    Google Scholar 

  9. J. H. Lee, I. Lozovatsky, S.-T. Jang, C. J. Jang, C. S. Hong, and H. J. S. Fernando, “Episodes of nonlinear internal waves in the northern East China Sea,” Geophys. Res. Lett. 33, L18601 (2006).

    Article  Google Scholar 

  10. V. G. Bondur, Yu. V. Grebenyuk, and K. D. Sabinin, “Internal waves on continental and island shelves of the open ocean: A comparative analysis for observations on the New York and Hawaii shelves,” Izv., Atmos. Ocean. Phys. 46 (5), 643–651 (2010).

    Article  Google Scholar 

  11. E. L. Shroyer, J. N. Moum, and J. D. Nash, “Nonlinear internal waves over New Jersey’s continental shelf,” J. Geophys. Res. 116, C03022 (2011).

    Google Scholar 

  12. T. G. Talipova, E. N. Pelinovsky, A. A. Kurkin, and O. E. Kurkina, “Modeling the dynamics of intense internal waves on the shelf,” Izv., Atmos. Ocean. Phys. 50 (6), 630–637 (2014).

    Article  Google Scholar 

  13. I. Fer, Z. Koenig, I. E. Kozlov, M. Ostrowski, T. P. Rippeth, L. Padman, et al., “Tidally forced lee waves drive turbulent mixing along the Arctic Ocean margins,” Geophys. Res. Lett. 47, e2020GL088083 (2020).

  14. A. J. Lucas, P. J. S. Franks, and C. L. Dupont, “Horizontal internal-tide fluxes support elevated phytoplankton productivity over the inner continental shelf,” Limnol. Oceanogr.: Fluids Environ. 1, 56–74 (2011).

    Article  Google Scholar 

  15. V. V. Navrotskii, V. Yu. Lyapidevskii, and E. P. Pavlova, “Internal waves and their biological effects in the marine shelf zone,” Vestn. Dal’nevost. Otd. Ross. Akad. Nauk 6, 22–31 (2012).

    Google Scholar 

  16. J. C. Garwood, R. C. Musgrave, and A. J. Lucas, “Life in internal waves,” Oceanography 33 (3), 38–49.

  17. V. G. Bondur, A. N. Serebryanyi, and V. V. Zamshin, “Registering fish shoals attracted by solitary intensive internal waves,” Dokl. Earth Sci. 492 (2), 471–474 (2020).

    Article  Google Scholar 

  18. I. E. Kozlov, V. N. Kudryavtsev, and S. Sandven, “Some results the study of internal waves in the Barents Sea using radar sensing from space,” Probl. Arkt. Antarkt., No. 3, 60–69 (2010).

  19. E. I. Svergun, A. V. Zimin, O. A. Atadzhanova, G. V. Zhegulin, D. A. Romanenkov, A. A. Konik, and I. E. Kozlov, “Short-period internal waves in the coastal area of the Barents Sea according to contact and satellite observation data,” Fundam. Prikl. Gidrofiz. 13 (4), 78–86 (2020).

    Google Scholar 

  20. I. V. Lavrenov and E. G. Morozov, Surface and Internal Waves in the Arctic Seas (Gidrometeoizdat, St. Petersburg, 2002) [In Russian].

    Google Scholar 

  21. I. E. Kozlov, V. N. Kudryavtsev, E. V. Zubkova, O. A. Atadzhanova, A. V. Zimin, D. A. Romanenkov, B. Shapron, and A. G. Myasoedov, “Regions of nonlinear internal wave generation in the Barents, Kara, and White seas according to satellite SAR measurements,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 11 (4), 338–345 (2014).

    Google Scholar 

  22. T. G. Talipova, O. E. Kurkina, E. V. Terletskaya, A. A. Kurkin, and E. A. Ruvinskaya, “Modeling of internal waves in the coastal area of the Barents Sea,” Ekol. Sist. Prib., No. 3, 26–38 (2014).

  23. A. V. Dikinis, A. Yu. Ivanov, L. N. Karlin, I. G. Mal’tseva, M. N. Marov, L. B. Neronskii, N. S. Ramm, V. R. Fuks, I. G. Avenarius, N. P. Berezin, S. Yu. Dudkin, V. V. Zaitsev, E. V. Leont’ev, A. K. Rynskaya, P. V. Stepanov, and N. V. Fedoseeva, Atlas of Annotated Sea-Surface Radar Images Obtained by the Almaz-1 Spacecraft (GEOS, Moscow, 1999) [in Russian].

    Google Scholar 

  24. C. R. Jackson, An Atlas of Internal Solitary-like Waves and their Properties (Global Ocean Associates, Alexandria, 2004).

    Google Scholar 

  25. H. P. Pao and Q. He, “Generation and transformation of intense internal waves on shelves,” in COAA Scientific Workshop, The University of Maryland, Collage Park (2002).

  26. E. I. Svergun and A. V. Zimin, “Characteristics of short-period internal waves in the Avacha Bay based on the in situ and satellite observations in August–September, 2018,” Phys. Oceanogr. 27 (3), 278–299 (2020).

    Article  Google Scholar 

  27. K. D. Sabinin and A. N. Serebryany, “‘Hot spots’ in the field of internal waves in the ocean,” Acoust. Phys. 53 (3), 357–380 (2007).

    Article  Google Scholar 

  28. G. V. Zhegulin, A. V. Zimin, and A. A. Rodionov, “Analysis of dispersion dependences and vertical structure of internal waves in the White Sea from experimental data,” Fundam. Prikl. Gidrofiz. 9 (4), 47–59 (2016).

    Google Scholar 

  29. Hydrometeorology and Hydrochemistry of the USSR Seas, vol. 2: The White Sea. 1. Hydrometeorological Conditions), Ed. by B. Kh. Glukhovskii (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  30. G. D. Egbert and S. Y. Erofeeva, “Efficient inverse modeling of barotropic ocean tides,” J. Oceanic Atmos. Technol. 19, 183–204 (2002).

    Article  Google Scholar 

  31. V. A. Ivanov, E. N. Pelinovskii, and T. G. Talipova, “The frequency of occurrence of intense internal waves,” Dokl. Akad. Nauk SSSR. 318 (6), 1470–1471 (1991).

    Google Scholar 

  32. A. N. Serebryanyi, “Internal waves in the coastal area of a tidal sea,” Okeanologiya 25 (5), 744–751 (1985).

    Google Scholar 

  33. C. G. R. Garret and W. H. Munk, “Space–time scales of internal waves,” J. Geophys. Res. 180 (3), 291–297 (1975).

    Article  Google Scholar 

  34. A. V. Zimin, D. A. Romanenkov, I. E. Kozlov, B. Shapron, A. A. Rodionov, O. A. Atadzhanova, A. G. Myasoedov, and F. Kollar, “Short-period internal waves in the White Sea: Operational subsatellite experiment in summer 2012,” Issled. Zemli Kosmosa, No. 3, 41–55 (2014).

    Google Scholar 

  35. P. G. Baines, “On internal tide generation models,” Deep Sea Res., Part A 29 (3), 307–338 (1982).

    Article  Google Scholar 

  36. A. Pichon, Y. Morel, R. Baraille, and L. Quaresma, “Internal tide interactions in the Bay of Biscay: Observations and modelling,” J. Mar. Syst. 109–110, S26–S44 (2013).

    Article  Google Scholar 

  37. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.dem:316.

  38. https://resources.marine.copernicus.eu/product-detail/ GLOBAL_REANALYSIS_PHY_001_030/INFORMATION.

  39. V. Vlasenko, N. Stashchuk, and K. Hutter, Baroclinic Tides: Theoretical Modelling and Observational Evidence (Cambridge University Press, New York, 2005).

    Book  Google Scholar 

  40. C. R. Jackson, J. C. B. Silva, and G. Jeans, “The generation of nonlinear internal waves,” Oceanography 25, 108–123 (2012).

    Article  Google Scholar 

  41. K. T. Bogdanov, Tidal Phenomena in the Pacific Ocean (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  42. G. Dietrich and K. Kalle, Allgeineine Meereskunde eine Finführung in die Ozeanographie (Gebruder Borntraeger, Berlin-Nikolassee, 1957; Gidrometeoizdat, Leningrad, 1961).

  43. A. Azevedo, J. C. B. Silva, and A. L. New, “On the generation and propagation of internal solitary waves in the southern Bay of Biscay,” Deep-Sea Res., Part I 53, 927–941 (2006).

    Article  Google Scholar 

  44. E. G. Morozov, I. E. Kozlov, S. A. Shchuka, and D. I. Frey, “Internal tide in the Kara Gates Strait,” Oceanology 57 (1), 8–18 (2017).

    Article  Google Scholar 

  45. O. Y. Lavrova, K. D. Sabinin, and S. I. Badulin, “Radar observation of internal wave and current interactions,” in IEEE 1999 International Geoscience and Remote Sensing Symposium IGARSS'99 (1999), pp. 159‒161.

  46. K. A. Rogachev and N. V. Shlyk, “Characteristics of the Kamchatka Current eddies,” Russ. Meteorol. Hydrol. 44, 416–423 (2019).

    Article  Google Scholar 

  47. O. Y. Lavrova, M. I. Mityagina, and K. D. Sabinin, “Study of internal wave generation and propagation features in non-tidal seas based on satellite synthetic aperture radar data,” Dokl. Earth Sci. 436, 165–169 (2011).

    Article  Google Scholar 

Download references

Funding

This work was carried out as part of State Task no. FMWE-2021-0014 (processing of in situ measurement data) and supported by the Russian Foundation for basic research, grant no. 20-35-90054 (support for PhD students, processing of satellite data, and analysis of internal tide generation criteria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Svergun.

Additional information

Translated by E.G. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svergun, E.I., Zimin, A.V., Romanenkov, D.A. et al. Short-Period Internal Waves in Shelf Regions with Intense Tidal Dynamics. Izv. Atmos. Ocean. Phys. 58, 585–597 (2022). https://doi.org/10.1134/S0001433822060160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822060160

Keywords:

Navigation