Skip to main content
Log in

Numerical Simulation of Methane Emission from an Artificial Reservoir

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In the context of the Paris Agreement, the inventory of greenhouse gases emissions by various sectors of the economy becomes especially important. Artificially flooded areas are well known as sources of CO2, CH4, and N2O for the atmosphere, while the existing inventory methods for such objects do not explicitly take into account many important physical and biogeochemical mechanisms responsible for the formation of these emissions. A new version of the one-dimensional (in vertical) physical and biogeochemical model LAKE (version 2.3) is adapted for water bodies with significant through flow; i.e., it takes into account the sources/sinks of all prognostic variables due to inflows and effluent streams, as well as the average vertical speed and level fluctuations. The model reproduces the processes of vertical transfer of heat and radiation in the water column, the formation of ice and snow in winter, the thermal conductivity and phase transitions in bottom sediments at different depths, generation, diffusion, and the bubble transport of methane from bottom sediments to the surface; the model also calculates a complex of other biogeochemical variables, including dissolved oxygen, carbon dioxide, the content of phyto- and zooplankton, dissolved organic carbon, dead particles, etc. Using the model, we calculated one annual cycle (2016–2017) of the thermodynamic and hydrochemical state of the Mozhaisk artificial reservoir, forced by the data of meteorological measurements. The simulated horizontally averaged vertical distribution of water temperature, dissolved oxygen, and methane content agrees satisfactorily with the observational data for the summer of 2017. At the same time, significant horizontal inhomogeneity is noticeable in the measurement data, especially in the methane concentration. The parameterization of horizontal heterogeneity effects is an important task for the future development of the model. According to the simulation results during the period from August 2016 to August 2017, the total methane flux from the reservoir to the atmosphere was 570 Mg/year, of which 80% is ebullition from the surface of the water body, 15% is the surface diffusion flux, and 5% of methane leaves the reservoir through the dam. Thus, the proposed model can be considered a tool for inventorying the emission of greenhouse gases from artificial water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. The spectral interval of photosynthetically active radiation (PAR) practically coincides with the interval of visible light so that the attenuation coefficient of PAR in the aquatic environment can be measured with satisfactory accuracy by visual methods, for example, using a Secchi disk.

REFERENCES

  1. N. Barros, J. J. Cole, L. J. Tranvik, Y. T. Prairie, D. Bastviken, V. L. M. Huszar, P. del Giorgio, and F. Roland, “Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude,” Nat. Geosci. 4 (9), 593–596 (2011).

    Article  Google Scholar 

  2. B. R. Deemer, J. A. Harrison, S. Li, J. J. Beaulieu, T. DelSontro, N. Barros, J. F. Bezerra-Neto, S. M. Powers, M. A. dos Santos, and J. A. Vonk, “Greenhouse gas emissions from reservoir water surfaces: A new global synthesis,” BioScience 66 (11), 949–964 (2016).

    Article  Google Scholar 

  3. J. A. Businger, J. C. Wyngaard, Y. Izumi, and E. F. Bradley, “Flux-profile relationships in the atmospheric surface layer,” J. Atmos. Sci. 28 (2), 181–189 (1971).

    Article  Google Scholar 

  4. C. A. Paulson, “The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer,” J. Appl. Meteorol. 9 (6), 857–861 (1970).

    Article  Google Scholar 

  5. V. Stepanenko, I. Mammarella, A. Ojala, H. Miettinen, V. Lykosov, and T. Vesala, “LAKE 2.0: A model for temperature, methane, carbon dioxide and oxygen dynamics in lakes,” Geosci. Model Dev. 9 (5), 1977–2006 (2016).

    Article  Google Scholar 

  6. V. M. Stepanenko, “Seiche parameterization for a one-dimensional lake model,” Tr. Mosk. Fiz.-Tekh. Inst. 10 (1), 97–111 (2018a).

    Google Scholar 

  7. V. M. Stepanenko, Mathematical modeling of the thermal regime and dynamics of greenhouse gases in land water bodies, Doctoral Dissertation in Physics and Mathematics (Moscow, 2018b).

  8. M. Hondzo and H. G. Stefan, “Lake water temperature simulation model,” J. Hydraul. Eng. 119 (11), 1251–1273 (1993).

    Article  Google Scholar 

  9. V. M. Stepanenko, E. E. Machul’skaya, M. V. Glagolev, and V. N. Lykosov, “Numerical modeling of methane emissions from lakes in the permafrost zone,” Izv., Atmos. Oceanic Phys. 47 (2), 252–264 (2011).

    Article  Google Scholar 

  10. D. F. McGinnis, J. Greinert, Y. Artemov, S. E. Beaubien, and A. Wuest, “Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere?,” J. Geophys. Res. 111 (C9), C09007 (2006).

    Google Scholar 

  11. H. G. Stefan and X. Fang, “Dissolved oxygen model for regional lake analysis,” Ecol. Model. 71 (1–3), 37–68 (1994).

    Article  Google Scholar 

  12. P. C. Hanson, A. I. Pollard, D. L. Bade, K. Predick, S. R. Carpenter, and J. A. Foley, “A model of carbon evasion and sedimentation in temperate lakes,” Global Change Biol. 10 (8), 1285–1298 (2004).

    Article  Google Scholar 

  13. Z. Tan, Q. Zhuang, N. J. Shurpali, M. E. Marushchak, C. Biasi, W. Eugster, and A. K. Walter, “Modeling CO2 emissions from Arctic lakes: Model development and site-level study,” J. Adv. Model. Earth Syst. 9 (5), 2190–2213 (2017).

    Article  Google Scholar 

  14. A. Sadeghian, S. C. Chapra, J. Hudson, H. Wheater, and K.-E. Lindenschmidt, “Improving in-lake water quality modeling using variable chlorophyll a/algal biomass ratios,” Environ. Model. Software 101, 73–85 (2018).

    Article  Google Scholar 

  15. C. G. Fichot and W. L. Miller, “An approach to quantify depth-resolved marine photochemical fluxes using remote sensing: Application to carbon monoxide (CO) photoproduction,” Remote Sens. Environ. 114 (7), 1363–1377 (2010).

    Article  Google Scholar 

  16. B. Koehler, T. Landelius, G. A. Weyhenmeyer, N. Machida, and L. J. Tranvik, “Sunlight-induced carbon dioxide emissions from inland waters,” Global Biogeochem. Cycles 28 (7), 696–711 (2014).

    Article  Google Scholar 

  17. R. R. Walker and W. J. Snodgrass, “Model for sediment oxygen demand in lakes,” J. Environ. Eng. 112 (1), 25–43 (1986).

    Article  Google Scholar 

  18. M. A. Donelan and R. Wanninkhof, “Gas transfer at water surface: Concepts and issues,” Gas Transfer Water Surf. 127, 1–10 (2002).

    Google Scholar 

  19. V. M. Stepanenko, I. A. Repina, G. Ganbat, and G. Davaa, “Numerical simulation of ice cover of saline lakes,” Izv., Atmos. Oceanic Phys. 55 (1), 129–138 (2019).

    Article  Google Scholar 

  20. V. V. Puklakov, Yu. S. Datsenko, A. V. Goncharov, K. K. Edel’shtein, M. G. Grechushnikova, M. G. Ershova, S. L. Belova, D. I. Sokolov, N. G. Puklakova, O. N. Erina, and A. D. Arakel’yants, The Hydroecological Regime of Water Reservoirs in the Moscow Region (Observations, Diagnostics, and Predictions) (Pero, Moscow, 2015) [in Russian].

    Google Scholar 

  21. M. G. Grechushnikova, I. A. Repina, V. M. Stepanenko, V. S. Kazantsev, A. Yu. Artamonov, and V. A. Lomov, “Methane emission from the surface of the Mozhaisk valley-type reservoir,” Geogr. Nat. Resour. 40 (3), 247–255 (2019).

    Article  Google Scholar 

  22. M. M. Mishon, Applied Hydrophysics (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  23. E. A. Paul and F. E. Clark, Soil Microbiology and Biochemistry (Academic Press, San Diego, 1996).

    Google Scholar 

  24. M. E. Lidstrom and L. Somers, “Seasonal study of methane oxidation in Lake Washington,” Appl. Environ. Microbiol. 47 (6), 1255–1260 (1984).

    Article  Google Scholar 

  25. S. Khatun, T. Iwata, H. Kojima, M. Fukui, T. Aoki, S. Mochizuki, A. Naito, A. Kobayashi, and R. Uzawa, “Aerobic methane production by planktonic microbes in lakes,” Sci. Total Environ. 696, 133916 (2019).

    Article  Google Scholar 

  26. T. DelSontro, P. A. del Giorgio and Y. T. Prairie, “No longer a paradox: The interaction between physical transport and biological processes explains the spatial distribution of surface water methane within and across lakes,” Ecosystems 21 (6), 1073–1087 (2018).

    Article  Google Scholar 

  27. A. Fuchs, E. Lyautey, B. Montuelle, and P. Casper, “Effects of increasing temperatures on methane concentrations and methanogenesis during experimental incubation of sediments from oligotrophic and mesotrophic lakes,” J. Geophys. Res.: Biogeosci. 121 (5), 1394–1406 (2016).

    Article  Google Scholar 

  28. S. Guseva, V. Stepanenko, N. Shurpali, M. E. Marushchak, C. Biasi, and S. E. Lind, “Numerical simulation of methane emission from subarctic lake in Komi Republic (Russia),” Geogr., Environ., Sustainability 2 (9), 58–74 (2016).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank K.A. Shukurov for providing measurement data for shortwave and longwave radiation.

Funding

This work was supported by the Russian Foundation for Basic Research, grant nos. 19-15-50265 (in terms of improving the physical block of the model to take into account the flow of the reservoir) and MD-1850.2020.5 (in terms of developing the biogeochemical block of the model) and corresponds to the scientific program of the Moscow Center for Fundamental and Applied Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Stepanenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanenko, V.M., Grechushnikova, M.G. & Repina, I.A. Numerical Simulation of Methane Emission from an Artificial Reservoir. Izv. Atmos. Ocean. Phys. 58, 649–659 (2022). https://doi.org/10.1134/S0001433822060159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822060159

Keywords:

Navigation