Skip to main content
Log in

Statistical Analysis of Intra- and Interannual Variability of Extreme Values of Sensible and Latent Heat Fluxes in the North Atlantic in 1979–2021

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Statistical regularities of the intra- and interannual variability of sensible and latent heat fluxes in the North Atlantic, including those based on identifying regression dependencies with various averaging of time series, are investigated. Various characteristics of fluxes are estimated, such as maxima and minima over the water basin, mean values, and medians. Based on ERA5 reanalysis data in 1979–2021, the evolution of these values in the North Atlantic is studied and compared with the behavior of the heat fluxes, both from year to year and within a mean climatic year. It is shown that there is a positive trend in the fluxes; parameters of the fluxes are estimated. The spatiotemporal variability of the extreme characteristics of fluxes (maximum and minimum) over the computational domain at fixed times is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. S. K. Gulev, T. Jung, and E. Ruprecht, “Estimation of the impact of sampling errors in the VOS observations on air–sea fluxes. Part I. Uncertainties in climate means,” J. Clim. 20 (2), 279–301 (2007).

    Article  Google Scholar 

  2. N. G. Loeb, B. A. Wielicki, and D. R. Doelling, “Toward optimal closure of the Earth’s top-of-atmosphere radiation budget,” J. Clim. 22 (3), 748–766 (2009).

    Article  Google Scholar 

  3. https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5.

  4. S. Josey, E. C. Kent, and P. K. Taylor, “New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology,” J. Clim. 12, 2856–2880 (1999).

    Article  Google Scholar 

  5. J. R. Grist and S. A. Josey, “Inverse analysis adjustment of the SOC air–sea flux climatology using ocean heat transport constraints,” J. Clim. 16, 3274–3295 (2003).

    Article  Google Scholar 

  6. D. I. Berry and E. C. Kent, “A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates,” Bull. Am. Meteorol. Soc. 90 (5), 645–656 (2009).

    Article  Google Scholar 

  7. L. Yu and R. A. Weller, “Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005),” Bull. Am. Meteorol. Soc. 88, 527–539 (2007).

    Article  Google Scholar 

  8. S. Grodsky, A. A. Bentamy, J. A. Carton, and R. T. Pinker, “Intraseasonal latent heat flux based on satellite observations,” J. Clim. 22 (17), 4539–4556 (2009).

    Article  Google Scholar 

  9. A. Andersson, C. Klepp, K. Fennig, S. Bakan, H. Grasl, and J. Schulz, “Evaluation of HOAPS-3 ocean surface freshwater flux components,” J. Appl. Meteorol. Climatol. 50 (2), 379–398 (2011).

    Article  Google Scholar 

  10. D. R. Cayan, “Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation,” J. Clim. 5 (4), 354–369 (1992).

    Article  Google Scholar 

  11. D. R. Cayan, “Variability of latent and sensible heat fluxes estimated using bulk formulate,” Atmos.-Ocean 30 (1), 1–42 (1992).

    Article  Google Scholar 

  12. D. R. Cayan, “Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature,” J. Phys. Oceanogr. 22 (8), 859–881 (1992).

    Article  Google Scholar 

  13. S. K. Gulev, M. Latif, N. Keenlyside, W. Park, K. P. Koltermann, “North Atlantic Ocean control on surface heat flux on multidecadal timescales,” Nature 499 (7459), 464–467 (2013).

    Article  Google Scholar 

  14. K. von Schuckmann, M. D. Palmer, K. E. Trenberth, A. Cazenave, D. Chambers, N. Champollion, J. Hansen, S. A. Josey, N. Loeb, P.-P. Mathieu, B. Meyssignac, and M. Wild, “An imperative to monitor Earth’s energy imbalance,” Nat. Clim. Change 6, 138–144 (2016).

    Article  Google Scholar 

  15. X. Liang and L. Yu, “Variations of the global net air–sea heat flux during the “Hiatus” period (2001-10),” J. Clim. 29 (10), 3647–3660 (2016).

    Article  Google Scholar 

  16. F. R. Robertson, J. B. Roberts, M. G. Bosilovich, A. Bentamy, C. A. Clayson, K. Fennig, M. Schröder, H. Tomita, G. P. Compo, M. Gutenstein, H. Hersbach, C. Kobayashi, L. Ricciardulli, P. Sardeshmukh, and L. C. Slivinski, “Uncertainties in ocean latent heat flux variations over recent decades in satellite-based estimates and reduced observation reanalyses,” J. Clim. 33 (19), 8415–8437 (2020).

    Article  Google Scholar 

  17. R. Parfitt, A. Czaja, and Y.-O. Kwon, “The impact of SST resolution change in the ERA Interim reanalysis on wintertime Gulf Stream frontal air–sea interaction,” Geophys. Res. Lett. 44 (7), 3246–3254 (2017).

    Article  Google Scholar 

  18. S. P. Bishop, R. J. Small, F. O. Bryan, and R. A. Tomas, “Scale dependence of midlatitude air–sea interaction,” J. Clim. 30 (20), 8207–8221 (2017).

    Article  Google Scholar 

  19. N. Tilinina, A. Gavrikov, and S. Gulev, “Association of the North Atlantic surface turbulent heat fluxes with midlatitude cyclones,” Mon. Weather Rev. 146 (11), 3691–3715 (2018).

    Article  Google Scholar 

  20. A. Bentamy, J. F. Piolle, A. Grouazel, R. Danielson, S. Gulev, et al., “Review and assessment of latent and sensible heat flux accuracy over the global oceans,” Remote Sens. Environ. 201, 196–218 (2017).

    Article  Google Scholar 

  21. S. K. Gulev and K. P. Belyaev, “Probability distribution characteristics for surface air–sea turbulent heat fluxes over the global ocean,” J. Clim. 25, 184–206 (2012).

    Article  Google Scholar 

  22. M. Kumar, A. Kumar, N. C. Mahanti, C. Mallik, R. K. Shukla, “Surface flux modelling using ARIMA technique in humid subtropical monsoon area,” J. Atmos. Sol.-Terr. Phys. 71 (12), 1293–1298 (2009).

    Article  Google Scholar 

  23. L. Yu, R. A. Weller, and B. Sun, “Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988–99) by a synthesis approach,” J. Clim. 17, 373–393 (2004).

    Article  Google Scholar 

  24. B. P. Kirtman, T. Stockdale, and R. Burgman, “The ocean’s role in modeling and predicting seasonal-to-interannual climate variations,” Int. Geophys. 103, 625–643 (2013).

    Article  Google Scholar 

  25. K. P. Belyaev, V. Yu. Korolev, A. K. Gorshenin, A. I. Antipov, M. A. Imeev, N. I. Kirushkin, and M. A. Lobovskii, “Some features of the intra-annual variability of heat fluxes in the North Atlantic,” Izv., Atmos. Ocean. Phys. 57 (6), 619–631 (2021).

    Article  Google Scholar 

  26. X. Song, Ch. Ning, and Y. Duan, “Observed extreme air–sea heat flux variations during three tropical cyclones in the tropical southeastern Indian Ocean,” J. Clim. 34 (9), 3683–3705 (2021).

    Article  Google Scholar 

  27. A. B. Polonskii and E. N. Voskresenskaya, “On the statistical structure of hydrometeorological fields in the North Atlantic,” Phys. Oceanogr. 14 (1), 15–26 (2004).

    Article  Google Scholar 

  28. S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika 52 (3–4), 591–611 (1965).

    Article  Google Scholar 

  29. I. N. Volodin, Lectures on the Theory of Probabilities and Mathematical Statistics (Izd. Kazan. univ., Kazan, 2006) [in Russian].

  30. V. Yu. Korolev, A. K. Gorshenin, S. K. Gulev, and K. P. Belyaev, “Statistical modeling of turbulent heat fluxes between the ocean and atmosphere using the sliding separation method for finite normal mixtures,” Inf. Primen. 9 (4), 3–13 (2015).

    Google Scholar 

  31. V. Yu. Korolev, A. K. Gorshenin, S. K. Gulev, and K. P. Belyaev, “Statistical modeling of air–sea turbulent heat fluxes by finite mixtures of Gaussian distributions,” Comm. Comput. Inf. Sci. 564, 152–162 (2015).

    Google Scholar 

  32. A. K. Gorshenin, V. Yu. Korolev, and A. A. Shcherbinina, “Statistical assessment of the distribution of random coefficients of the Langevin stochastic differential equation,” Inf. Primen. 14 (3) 3–12 (2020).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Statistical analysis of the spatiotemporal reanalysis data was performed using the infrastructure of the Shared Research Facilities “High Performance Computing and Big Data” (CKP “Informatics”) of the Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences (Moscow).

Funding

The studies by K.P. Belyaev were carried out as part of the State Task of the Shirshov Institute of Oceanology (no. FMWE-2021-0002) and with partial support from the Russian Science Foundation, grant no. 20-17-00139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Gorshenin.

Additional information

Translated by E.G. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, K.P., Gorshenin, A.K., Korolev, V.Y. et al. Statistical Analysis of Intra- and Interannual Variability of Extreme Values of Sensible and Latent Heat Fluxes in the North Atlantic in 1979–2021. Izv. Atmos. Ocean. Phys. 58, 609–624 (2022). https://doi.org/10.1134/S0001433822060044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822060044

Keywords:

Navigation