Skip to main content
Log in

Large-Eddy Simulation and Parameterization of Decaying Turbulence in the Evening Transition of the Atmospheric Boundary Layer

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This study presents the results of large-eddy simulation (LES) of the evening transition in the atmospheric boundary layer in the case of free convection and in the presence of geostrophic wind. The turbulent kinetic energy (TKE) balance and its components are analyzed. It is shown that within the transition, periods of fast and slow decay can be distinguished. The differences in TKE anisotropy between these two periods are demonstrated. During the fast decay period, the majority of the energy within the vertical component is consumed due to inertial movement of the thermals after the cease of convection. This is followed by the TKE redistribution into large-scale horizontal components, which leads to the formation of quasi-horizontal turbulence, where the TKE dissipation is significantly slower in comparison to the isotropic state. It is shown that one-dimensional boundary-layer model, in which turbulent fluxes are parameterized by means of a two-equation closure, is not able to reproduce evening transition dynamics observed in LES. In particular, the use of the gradient approximation in the one-dimensional model leads to the preservation of the convective distribution of the heat flux along the vertical during the transition period and additional TKE generation in the boundary layer due to the action of buoyancy forces. The use of the phenomenological equation for the dissipation rate leads to decreased TKE decay rate during the fast decay period and increased TKE decay rate during the slow decay period. Possible approaches toward modification of the Reynolds-averaged Navier–Stokes (RANS) closures in order to correctly reproduce transition periods of the atmospheric boundary layer are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. R. B. Stull and A. G. M. Driedonks, “Applications of the transilient turbulence parameterization to atmospheric boundary-layer simulations,” Boundary-Layer Meteorol. 40 (3), 209–239 (1987).

    Article  Google Scholar 

  2. A. Debolskiy, E. Mortikov, A. Glazunov, and C. Lüpkes, “Evaluation of surface layer stability functions and their extension to first order turbulent closures for weakly and strongly stratified stable boundary layer,” submitted to Boundary-Layer Meteorol.

  3. E. V. Mortikov, A. V. Glazunov, A. V. Debolskiy, V. N. Lykosov, and S. S. Zilitinkevich, “Modeling of the dissipation rate of turbulent kinetic energy,” Dokl. Earth Sci. 489 (4), 1440–1443 (2019).

    Article  Google Scholar 

  4. G. Svensson, A. A. M. Holtslag, V. Kumar, T. Mauritsen, G. J. Steeneveld, W. M. Angevine, E. Bazile, A. Beljaars, E. I. F. de Bruijn, A. Cheng, L. Conangla, J. Cuxart, M. Ek, M. J. Falk, F. Freedman, et al., “Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: The second GABLS experiment,” Boundary-Layer Meteorol. 140, 177–206 (2011).

    Article  Google Scholar 

  5. A. A. M. Holtslag, G. Svensson, P. Baas, S. Basu, B. Beare, A. C. M. Beljaars, F. C. Bosveld, J. Cuxart, J. Lindvall, G. J. Steeneveld, M. Tjernström, and B. J. H. Van De Wiel, “Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models,” Bull. Am. Meteorol. Soc. 94 (11), 1691–1706 (2013).

    Article  Google Scholar 

  6. W. M. Angevine, J. M. Edwards, M. Lothon, M. A. LeMone, and S. R. Osborne, “Transition periods in the diurnally-varying atmospheric boundary layer over land,” Boundary-Layer Meteorol. 177, 205–223 (2020).

    Article  Google Scholar 

  7. A. C. Taylor, R. J. Beare, and D. J. Thomson, “Simulating dispersion in the evening-transition boundary layer,” Boundary-Layer Meteorol. 153, 389–407 (2014).

    Article  Google Scholar 

  8. C. G. Copstein, “Simulating the evening transition in the PBL and evaluating its contribution to the next day prediction ozone peak concentration,” Ph.D. Thesis (University of Houston, 2015).

  9. G. L. Mellor and T. Yamada, “Development of a turbulence closure model for geophysical fluid problems,” Rev. Geophys. 20 (4), 851–875 (1982).

    Article  Google Scholar 

  10. S. S. Zilitinkevich, T. Elperin, N. Kleeorin, I. Rogachevskii, and I. Esau, “A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably-stratified geophysical flows,” Boundary-Layer Meteorol. 146, 341–373 (2013).

    Article  Google Scholar 

  11. H. Burchard, Applied Turbulence Modelling in Marine Waters (Springer, Berlin, 2002).

    Book  Google Scholar 

  12. H. W. Detering and D. Etling, “Application of the E–ε turbulence model to the atmospheric boundary-layer,” Boundary-Layer Meteorol. 33, 113–133 (1985).

    Article  Google Scholar 

  13. A. Sogachev, M. Kelly, and M. Y. Leclerc, “Consistent two-equation closure modelling for atmospheric research: Buoyancy and vegetation implementations,” Boundary-Layer Meteorol. 145, 307–327 (2012).

    Article  Google Scholar 

  14. C. Zhang, Y. Wang, and M. Xue, “Evaluation of an E–ε and three other boundary layer parameterization schemes in the WRF model over the Southeast Pacific and the Southern Great Plains,” Mon. Weather. Rev. 148 (3), 1121–1145 (2020).

    Article  Google Scholar 

  15. E. H. Langland and C.-S. Liou, “Implementation of an E–ε parameterization of vertical subgrid-scale mixing in a regional model,” Mon. Weather Rev. 124 (5), 905–918 (1996).

    Article  Google Scholar 

  16. R. Nuterman, A. Mahura, A. Baklanov, B. Amstrup, and A. Zakey, “Downscaling system for modelling of atmospheric composition on regional, urban and street scales,” Atmos. Chem. Phys. 21 (14), 11099–11112 (2021).

    Article  Google Scholar 

  17. T. C. Vu, T. Asaeda, and Y. Ashie, “Development of a numerical model for the evaluation of the urban thermal environment,” J. Wind Eng. Ind. Aerodyn. 81 (1–3), 181–196 (1999).

    Article  Google Scholar 

  18. M. Nakanishi and H. Niino, “An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification,” Boundary-Layer Meteorol. 112, 1–31 (2004).

    Article  Google Scholar 

  19. O. El Guernaoui, J. Reuder, I. Esau, T. Wolf, and B. Maronga, “Scaling the decay of turbulence kinetic energy in the free-convective boundary layer,” Boundary-Layer Meteorol. 173 (1), 79–97 (2019).

    Article  Google Scholar 

  20. F. T. M. Nieuwstadt and R. A. Brost, “The decay of convective turbulence,” J. Atmos. Sci. 43 (6), 532–546 (1986).

    Article  Google Scholar 

  21. S.-B. Park, J.-J. Baik, and B.-S. Han, “Role of wind shear in the decay of convective boundary layers,” Atmosphere 11 (6), 622 (2020).

    Article  Google Scholar 

  22. D. Pino, H. J. J. Jonker, J. V.-G. de Arellano, and A. Dosio, “Role of shear and the inversion strength during sunset turbulence over land: Characteristic length scales,” Boundary-Layer Meteorol. 121 (3), 537–556 (2006).

    Article  Google Scholar 

  23. Z. Sorbjan, “Decay of convective turbulence revisited,” Boundary-Layer Meteorol. 82 (3), 503–517 (1997).

    Article  Google Scholar 

  24. J. W. Deardorff, “Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection,” J. Atmos. Sci. 27 (8), 1211–1213 (1970).

    Article  Google Scholar 

  25. A. N. Kolmogorov, “On the degradation of isotropic turbulence in an incompressible viscous fluid,” Dokl. Akad. Nauk SSSR 31, 538–540 (1941).

    Google Scholar 

  26. P. G. Saffman, “The large-scale structure of homogeneous turbulence,” J. Fluid Mech. 27 (3), 581–593 (1967).

    Article  Google Scholar 

  27. G. Birkoff, “Fourier synthesis of homogeneous turbulence,” Commun. Pure Appl. Math. 7, 19–44 (1954).

    Article  Google Scholar 

  28. V. N. Lykosov, “The problem of closure of turbulent boundary layer models using equations for kinetic turbulent energy and its dissipation rate,” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 28 (7), 696-704 (1992).

    Google Scholar 

  29. E. Tkachenko, A. Debolskiy, and E. Mortikov, “Intercomparison of subgrid scale models in large-eddy simulation of sunset atmospheric boundary layer turbulence: Computational aspects,” Lobachevskii J. Math. 42 (7), 1580–1595 (2021).

    Article  Google Scholar 

  30. U. Rizza, M. M. Miglietta, G. A. Degrazia, O. C. Acevedo, and E. P. Marques Filho, “Sunset decay of the convective turbulence with large-eddy simulation under realistic conditions,” Phys. A (Amsterdam, Neth.) 392, 4481–4490 (2013).

  31. D. F. Nadeau, E. R. Pardyjak, C. W. Higgins, H. J. S. Fernando, and M. B. Parlange, “A simple model for the afternoon and early evening decay of convective turbulence over different land surfaces,” Boundary-Layer Meteorol. 141 (2), 301–324 (2011).

    Article  Google Scholar 

  32. A. Glazunov, Ü. Rannik, V. Stepanenko, V. Lykosov, M. Auvinen, T. Vesala, and I. Mammarella, “Large-eddy simulation and stochastic modeling of Lagrangian particles for footprint determination in the stable boundary layer,” Geosci. Model Dev. 9 (9), 2925–2949 (2016).

    Article  Google Scholar 

  33. M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-scale eddy viscosity model,” Phys. Fluids A 3 (7), 1760–1765 (1991).

    Article  Google Scholar 

  34. D. K. Lilly, “A proposed modification of the Germano subgrid-scale closure method,” Phys. Fluids A 4 (3), 633–635 (1992).

    Article  Google Scholar 

  35. E. Bou-Zeid, C. Meneveau, and M. Parlange, “A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows,” Phys. Fluids 17 (2), 025105-1–025105-18 (2005).

    Article  Google Scholar 

  36. C. Meneveau, T. S. Lund, and W. H. Cabot, “A Lagrangian dynamic subgrid-scale model of turbulence,” J. Fluid Mech. 319, 353–385 (1996).

    Article  Google Scholar 

  37. D. S. Gladskikh, V. M. Stepanenko, and E. V. Mortikov, “The effect of the horizontal dimensions of inland water bodies on the thickness of the upper mixed layer,” Water Resour. 48 (2), 226–234 (2021).

    Article  Google Scholar 

  38. E. Kadantsev, E. Mortikov, and S. Zilitinkevich, “The resistance law for stably stratified atmospheric planetary boundary layers,” Q. J. R. Meteorol. Soc. 147 (737), 2233–2243 (2021).

    Article  Google Scholar 

  39. E. V. Mortikov, “Numerical simulation of the motion of an ice keel in a stratified flow,” Izv., Atmos. Ocean. Phys. 52 (1), 108–115 (2016).

    Article  Google Scholar 

  40. E. V. Mortikov, A. V. Glazunov, and V. N. Lykosov, “Numerical study of plane Couette flow: Turbulence statistics and the structure of pressure-strain correlations,” Russ. J. Num. Anal. Math. Model. 34 (2), 119–132 (2019).

    Article  Google Scholar 

  41. Y. Morinishi, T. S. Lund, O. V. Vasilyev, and P. Moin, “Fully conservative higher order finite difference schemes for incompressible flows,” J. Comput. Phys. 143, 90–124 (1998).

    Article  Google Scholar 

  42. D. L. Brown, R. Cortez, and M. L. Minion, “Accurate projection methods for the incompressible Navier–Stokes equations,” J. Comput. Phys. 168, 464–499 (2001).

    Article  Google Scholar 

  43. Y. Zang, R. L. Street, and J. Koseff, “A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows,” Phys. Fluids A 5 (12), 3186–3196 (1993).

    Article  Google Scholar 

  44. T. S. Lund, “On the use of discrete filters for large eddy simulation,” in Annual Research Briefs (Stanford University, Center for Turbulence Research, 1997), pp. 83–95.

    Google Scholar 

  45. A. V. Debolskiy, V. M. Stepanenko, A. V. Glazunov, and S. S. Zilitinkevich, “Bulk models of sheared boundary layer convection,” Izv., Atmos. Ocean. Phys. 55 (2), 139–151 (2019).

    Article  Google Scholar 

  46. V. Wong and D. K. Lilly, “A comparison of two subgrid closure methods for turbulent thermal convection,” Phys. Fluids 6 (2), 1017–1023 (1994).

    Article  Google Scholar 

  47. E. V. Tkachenko, A. V. Debolskiy, and E. V. Mortikov, “Analysis of turbulent kinetic energy decay power law in atmospheric boundary layer models,” IOP Conf. Ser.: Earth Environ. Sci. 611 (1), 012–014 (2020).

  48. E. Tkachenko, A. Debolskiy, E. Mortikov, and A. Glazunov, Large-eddy simulation and parameterization of decaying turbulence in the evening transition of atmospheric boundary layer, Supplementary dataset (2021). https://doi.org/10.23728/b2share.cb7f24996d234148a56b4444875226d0

Download references

ACKNOWLEDGMENTS

The study was conducted using the equipment of the Center for Collective Use of Ultra-High-Performance Computing Resources of Moscow State University. The data of the numerical experiments are available at the website of the EUDAT Collaborative Data Infrastructure (EUDAT CDI) [48].

Funding

This study was conducted with the support of the Russian Foundation for Basic Research (grant no. 20-05-00776) and President of the Russian Federation grant to young scientists no. MK-1867.2020.5, as well as with the partial support of the Brain, Cognitive Systems, Artificial Intelligence scientific and educational interdisciplinary school of Moscow University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Tkachenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachenko, E.V., Debolskiy, A.V., Mortikov, E.V. et al. Large-Eddy Simulation and Parameterization of Decaying Turbulence in the Evening Transition of the Atmospheric Boundary Layer. Izv. Atmos. Ocean. Phys. 58, 219–236 (2022). https://doi.org/10.1134/S0001433822030112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822030112

Keywords:

Navigation