Skip to main content
Log in

Analysis of Sea-Ice Areas Undetectable by the ASI Algorithm Based on Satellite Microwave Radiometry in the Arctic Ocean

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING SEAS AND OCEANS FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In the period of intense ice melting, algorithms retrieving sea-ice concentration from satellite microwave radiometry (SMR) data may fail to detect vast regions of floating ice. Late-stage melting is characterized by an abundance of melt ponds on ice, resulting in considerable underestimation of sea-ice concentration. Also, during melting, ice concentration decreases and ice breccias disintegrate; therefore the size of ice floes decreases. In winter, at river mouths in the shelf seas, ice is formed with a heavy load of terrigenous sediments carried by the rivers. A dirty ice surface becomes visible in summer when snow cover melts off. SMR techniques fail to adequately determine dirty ice concentration. The paper considers the impact of ice melt, concentration, floe size, and dirtiness on the determination of sea ice extent in the Arctic in summer using the ARTIST Sea Ice (ASI) algorithm. Our study shows that the portion of ice cover left undetected by the SMR technique may range in different years 5.7 to 23.3% of the total Arctic sea ice extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Afanas’eva, E.V., Alekseeva, T.A., Sokolova, Yu.V., Demchev, D.M., Chufarova, M.S., Bychenkov, Yu.D., and Devyataev, O.S., The AARI methodology for producing sea ice charts, Ross. Arkt., 2019, no. 7, pp. 5–20. https://doi.org/10.24411/2658-4255-2019-10071

  2. Agnew, T. and Howell, S., The use of operational ice charts for evaluating passive microwave ice concentration data, Atmos.–Ocean, 2003, vol. 41, pp. 317–331. https://doi.org/10.3137/ao.410405

    Article  Google Scholar 

  3. Alekseeva, T., Tikhonov, V., Frolov, S., Repina, I., Raev, M., Sokolova, J., Sharkov, E., Afanasieva, E., and Serovetnikov, S., Comparison of Arctic sea ice concentrations from the NASA Team, ASI, and VASIA2 algorithms with summer and winter ship data, Remote Sens., 2019, vol. 11. https://doi.org/10.3390/rs11212481

  4. Appel’, I.L. and Gudkovich, Z.M., Ice-cover reflectivity during ice melting in the southeastern part of the Laptev Sea, in Polyarnaya ekspeditsiya Sever-76 (nauchnye rezul’taty) (The Sever-76 Polar Expedition (Scientific Results)), Leningrad: Gidrometeoizdat, 1979, vol. 2, pp. 27–32.

  5. Boyarskii, D.A., Tikhonov, V.V., Kleeorin, N.I., and Mirovskii, V.G., Inclusion of scattering losses in the models of the effective permittivity of dielectric mixtures and applications to wet snow, J. Electromagn. Waves Appl., 1994, vol. 8, pp. 1395–1410. https://doi.org/10.1163/156939394X00281

    Article  Google Scholar 

  6. Bryazgin, N.N., Surface albedo of drifting ice, Probl. Arkt. Antarkt., 1959, no. 1, pp. 33–40.

  7. Cavalieri, D.J. and Parkinson, C.L., Arctic sea ice variability and trends, 1979–2010, Cryosphere, 2012, vol. 6, pp. 881–889. https://doi.org/10.5194/tc-6-881-2012

    Article  Google Scholar 

  8. Cavalieri, D.J., Burns, B.A., and Onstott, R.G., Investigation of the effects of summer melt on the calculation of sea ice concentration using active and passive microwave data, J. Geophys. Res.: Oceans, 1990, vol. 95, pp. 5359–5369. https://doi.org/10.1029/JC095iC04p05359

    Article  Google Scholar 

  9. Darby, D.A., Myers, W.B., Jakobsson, M., and Rigor, I., Modern dirty sea ice characteristics and sources: The role of anchor ice, J. Geophys. Res.: Oceans, 2011, vol. 116. https://doi.org/10.1029/2010JC006675

  10. Doronin, Yu.P., Technique for calculating the radiation balance of the snow–ice cover in the Arctic, Tr. Arkt. Antarkt. Nauchno-Issled. Inst., 1961, vol. 229, pp. 84–89.

    Google Scholar 

  11. Eicken, H., Gradinger, R., Gaylord, A., Mahoney, A., Rigor, I., and Melling, H., Sediment transport by sea ice in the Chukchi and Beaufort seas: Increasing importance due to changing ice conditions?, Deep Sea Res. II, 2005, vol. 52, pp. 3281–3302.

    Article  Google Scholar 

  12. Emery, W. and Camps, A., Introduction to Satellite Remote Sensing: Atmosphere, Ocean, Land and Cryosphere Application, Elsevier, 2017.

    Google Scholar 

  13. Frolov, I.E., Gudkovich, Z.M., Karklin, V.P., Kovalev, E.G., and Smolyanitsky, V.M., Climate Change in Eurasian Arctic Shelf Seas: Centennial Ice Cover Observations, Berlin: Springer, 2009. https://doi.org/10.1007/978-3-540-85875-1.

  14. Hallikainen, M., Lemmetyinen, J., and Jiang, L., Snow properties from passive microwave, in Reference Module in Earth Systems and Environmental Sciences, Elsevier, 2017. https://doi.org/10.1016/B978-0-12-409548-9.10358-6

  15. Han, H., Lee, S., Kim, H.-C., and Kim, M., Retrieval of summer sea ice concentration in the Pacific Arctic ocean from AMSR2 observations and numerical weather data using random forest regression, Remote Sens., 2021, vol. 13. https://doi.org/10.3390/rs13122283

  16. Ivanov, B.V., Assessment of the natural and anthropogenic pollution of sea ice, Mater. Glyatsiol. Issled., 2007, vol. 102, pp. 121–126.

    Google Scholar 

  17. Ivanova, N., Johannessen, O., Pedersen, L., and Tonboe, R., Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: A comparison of eleven sea ice concentration algorithms, IEEE Trans. Geosci. Remote Sens., 2014, vol. 52, pp. 7233–7246. https://doi.org/10.1109/TGRS.2014.2310136

    Article  Google Scholar 

  18. Ivanova, N., Pedersen, L., Tonboe, R., Kern, S., Heygster, G., Lavergne, T., Sørensen, A., Saldo, R., Dybkjær, G., Brucker, L., and Shokr, M., Inter-comparison and evaluation of sea ice algorithms: Towards further identification of challenges and optimal approach using passive microwave observations, Cryosphere, 2015a, vol. 9, pp. 1797–1817. https://doi.org/10.5194/tc-9-1797-2015

    Article  Google Scholar 

  19. Ivanova, N., Pedersen, L., Tonboe, R., Kern, S., Heygster, G., Lavergne, T., Sørensen, A., Saldo, R., Dybkjær, G., Brucker, L., and Shokr, M., Inter-comparison and evaluation of sea ice algorithms: Towards further identification of challenges and optimal approach using passive microwave observations, Cryosphere, 2015b, vol. 9, pp. 1797–1817. https://doi.org/10.5194/tc-9-1797-2015

    Article  Google Scholar 

  20. Kern, S., Lavergne, T., Notz, D., Pedersen, L.T., Tonboe, R.T., Saldo, R., and Sorensen, A.M., Satellite passive microwave sea-ice concentration data set intercomparison: Closed ice and ship-based observations, Cryosphere, 2019, vol. 13, pp. 3261–3307.

    Article  Google Scholar 

  21. Knuth, M.A. and Ackley, S.F., Summer and early-fall sea-ice concentration in the Ross Sea: Comparison of in situ ASPeCt observations and satellite passive microwave estimates, Ann. Glaciol., 2006, vol. 44, pp. 303–309. https://doi.org/10.3189/172756406781811466

    Article  Google Scholar 

  22. Lubin, D., Garrity, C., Ramseier, R., and Whritner, R.H., Total sea ice concentration retrieval from the SSM/I 85.5 GHz channels during the Arctic summer, Remote Sens. Environ., 1997, vol. 62, pp. 63–76. https://doi.org/10.1016/S0034-4257(97)00081-3

    Article  Google Scholar 

  23. Mätzler, C., Applications of the interaction of microwaves with the natural snow cover, Remote Sens. Rev., 1987, vol. 2, pp. 259–387. https://doi.org/10.1080/02757258709532086

    Article  Google Scholar 

  24. Nürnberg, D., Wollenburg, I., Dethleff, D., Eicken, H., Kassens, H., Letzig, T., Reimnitz, E., and Thiede, J., Sediments in Arctic sea ice: Implications for entrainment, transport and release, Mar. Geol., 1994, vol. 119, pp. 185–214. https://doi.org/10.1016/0025-3227(94)90181-3

    Article  Google Scholar 

  25. Ozsoy-Cicek, B., Ackley, S.F., Worby, A., Xie, H., and Lieser, J., Antarctic sea-ice extents and concentrations: comparison of satellite and ship measurements from international polar year cruises, Ann. Glaciol., 2011, vol. 52, pp. 318–326. https://doi.org/10.3189/172756411795931877

    Article  Google Scholar 

  26. Raizer, V., Advances in Passive Microwave Remote Sensing of Oceans, Taylor and Francis, 2017.

    Book  Google Scholar 

  27. Reimnitz, E., Kassens, H., and Eicken, H., Report of polar research, in Russia–Germany Cooperation: Laptev Sea System, 1995, pp. 71–77.

    Google Scholar 

  28. Rukovodstvo po proizvodstvu ledovoi aviarazvedki (Guide to Ice Airborne Reconnaissance), Leningrad: Gidrometeoizdat. 1981.

  29. Savchenko, V.G., Nagurnyi, A.P., and Makshtas, A.P., Response of sea ice cover to airborne contamination, Meteorol. Gidrol., 1990, no. 4, pp. 102–108.

  30. Sharkov, E.A., Breaking Ocean Waves Geometry, Structure and Remote Sensing, Springer, 2007.

    Google Scholar 

  31. Smith, D.M., Extraction of winter total sea-ice concentration in the Greenland and Barents seas from SSM/I data, Int. J. Remote Sens., 1996, vol. 17, pp. 2625–2646. https://doi.org/10.1080/01431169608949096

    Article  Google Scholar 

  32. Smolyanitsky, V., Karelin, I., Karklin, V., and Ivanov, B., Sea ice of the Eastern Siberian Sea: Ice conditions, albedo, surface contamination and ice mass exchange, in Oceanography of the ESS (Proceedings of the ESSS Workshop in Malaga, Spain, 11–18 October 2003), Fairbanks, Alaska: International Arctic Research Center, 2003.

  33. Spreen, G., Kaleschke, L., and Heygster, G., Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res.: Oceans, 2008, vol. 113. https://doi.org/10.1029/2005JC003384

  34. Stroeve, J. and Notz, D., Changing state of Arctic sea ice across all seasons, Environ. Res. Lett., 2018, vol. 13, 103001. https://doi.org/10.1088/1748-9326/aade56

    Article  Google Scholar 

  35. Tikhonov, V.V., Boyarskii, D.A., Repina, I.A., Raev, M.D., Sharkov, E.A., and Alexeeva, T.A., Snow cover effect on brightness temperature of Arctic ice fields based on SSM/I data, Progress in Electromagnetics Research Symposium (PIERS) Proceedings, Stockholm, 2013, pp. 514–518.

  36. Tikhonov, V.V., Boyarskii, D.A., Sharkov, E.A., Raev, M.D., Repina, I.A., Ivanov, V.V., Alexeeva, T.A., and Komarova, N.Y., Microwave model of radiation from the multilayer “ocean–atmosphere” system for remote sensing studies of the polar regions, Prog. Electromagn. Res. B, 2014, vol. 59, pp. 123–133. https://doi.org/10.2528/PIERB14021706

    Article  Google Scholar 

  37. Tikhonov, V.V., Repina, I.A., Raev, M.D., Sharkov, E.A., Ivanov, V.V., Boyarskii, D.A., Alexeeva, T.A., and Komarova, N.Y., A physical algorithm to measure sea ice concentration from passive microwave remote sensing data, Adv. Space Res., 2015, vol. 56, pp. 1578–1589. https://doi.org/10.1016/j.asr.2015.07.009

    Article  Google Scholar 

  38. Tikhonov, V.V., Raev, M.D., Sharkov, E.A., Boyarskii, D.A., Repina, I.A., and Komarova, N.Y., Satellite microwave radiometry of sea ice of polar regions: A review, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 9, pp. 1012–1030. https://doi.org/10.1134/S0001433816090267

    Article  Google Scholar 

  39. Ulaby, F.T. and Long, D.G., Microwave Radar and Radiometric Remote Sensing, Univ. of Michigan Press, 2014.

    Book  Google Scholar 

  40. Wang, Q., Lu, P., Zu, Y., Li, Z., Lepparanta, M., and Zhang, G., Comparison of passive microwave data with shipborne photographic observations of summer sea ice concentration along an Arctic cruise path, Remote Sens., 2019, vol. 11. https://doi.org/10.3390/rs11172009

  41. Wiebe, H., Heygster, G., and Markus, T., Comparison of the ASI ice concentration algorithm with Landsat-7 ETM+ and SAR imagery, IEEE Trans. Geosci. Remote Sens., 2009, vol. 47, pp. 3008–3015. https://doi.org/10.1109/TGRS.2009.2026367

    Article  Google Scholar 

  42. Zhivotovskaya, M.A., Zabolotskikh, E.V., and Shapron, B., Spurious arctic sea ice identification by satellite microwave radiometers under extreme weather conditions, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2019, vol. 16, pp. 209–220. https://doi.org/10.21046/2070-7401-2019-16-6-209-220

    Article  Google Scholar 

Download references

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Funding

The work with ice maps compiled at the Arctic and Antarctic Research Institute (AARRC) Ice and Hydrometeorological Information Center and AARI ice airborne reconnaissance data was supported by the Russian Foundation for Basic Research, project no. 18-05-60048 “Investigation of the Interannual Variability of the Sea Ice Balance in the Arctic Ocean at the Turn of the 20th and 21st Centuries” (T.A. Alekseeva and V.M. Smolyanitskiy). The work with the data of the ASI algorithm and satellite images in the visible range was carried out within the framework of the topic “Monitoring”, state registration no. 01.20.0.2.00164 (Yu.V. Sokolova, V.V. Tikhonov, M.D. Raev, and E.A. Sharkov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Alekseeva.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, T.A., Sokolova, J.V., Tikhonov, V.V. et al. Analysis of Sea-Ice Areas Undetectable by the ASI Algorithm Based on Satellite Microwave Radiometry in the Arctic Ocean. Izv. Atmos. Ocean. Phys. 57, 1690–1704 (2021). https://doi.org/10.1134/S0001433821120033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821120033

Keywords:

Navigation