Skip to main content
Log in

Sedimentary-Condensation Model of Formation of Hydrocarbon Fields in the South Caspian Basin

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This paper summarizes and analyzes the results of long-term field and analytical studies, as well as petroleum-field data (measurements of temperatures and productivity of wells, analyses of the physicochemical properties of hydrocarbons (HCs) and the hydrochemical composition of waters, etc.) for onshore and offshore fields and mud volcanoes in the South Caspian Basin (SCB). In the last 30 years, research has been carried out using the most modern methods: 3D seismic exploration, rock pyrolysis, isotope-geochemical and biomarker studies of organic matter (OM) and HCs, a reconstruction of the thermal history of the basin, basin modeling, etc. The resulting data, taking into account global experience in studying oil and gas systems of other sedimentary basins, formed the basis for the sedimentary-condensation model of the formation of HC fields in the SCB developed by the author. The model uses predictive estimates of the temperatures and phase state of HCs at the base of various stratigraphic complexes. It is shown that, under severe temperature conditions in the basal layers of the sedimentary strata (temperatures of 250–500°С), a gas consisting mainly of methane and water vapor is formed as a result of cracking of liquid HCs. The dominant role of vapor-gas solutions (having an increased ability to dissolve high-molecular OM) in the mass transfer of liquid HCs to traps, accompanied by phase differentiation of the fluid during ascending migration, has been substantiated. Under conditions of a high degree of closure of deeply buried sediments, the main pathways of pulse-injection focused migration of fluids are deep faults, and systems of crevices and channels of mud volcanoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Agalarova, D.A., Korni gryazevykh vulkanov Azerbaidzhana (Origins of Mud Volcanoes of Azerbaijan), Baku: ONTI-Aznefteizdat, 1945.

  2. Akhundov, A.R., Mekhtiev, U.Sh., and Rachinskii, M.Z., Spravochnik po podzemnym vodam neftegazovykh i gazokondensatnykh mestorozhdenii Azerbaidzhana (Handbook on Underground Waters of Petroleum and Gas Condensate Fields of Azerbaijan), Baku: Maarif, 1976.

  3. Aliev, A.I., Regularities in the distribution of oil and gas deposits in the northwest of the South-Caspian Trough, Geol. Nefti Gaza, 1972, no. 1, pp. 6–9.

  4. Allen, M.B., Jones, S., Ismail-Zadeh, A., Simmons, M.D., and Anderson, L., Onset of subduction as the cause of rapid Pliocene–Quaternary subsidence in the South Caspian Basin, Geology, 2002, vol. 30, no. 9, pp. 775–778.

    Google Scholar 

  5. Allen, M.B., Jackson, J., and Walker, R., Late Cenozoic reorganization of the Arabia–Eurasia collision and the comparison of short-term and long-term deformation rates, Tectonics, 2004, vol. 23, pp. 1–16.

    Google Scholar 

  6. Ashirmamedov, M.A., Some features of the location and formation of oil and gas deposits in southwestern Turkmenia, Tr. Turkm. Fil. VNII, 1967, no. 9, pp. 14–33.

  7. Axen, G.J., Lam, P.S., Grove, M., and Stockli, D.F., Exhumation of the west-central Alborz mountains, Iran, Caspian subsidence, and collision-related tectonics, Geology, 2001, vol. 29, pp. 559– 562.

    Google Scholar 

  8. Bailey, N.J.L., Guliyev, I.S., and Feyzullayev, A.A., Source rocks in the South Caspian, in AAPG/ASPG Research Symposium “Oil and Gas Petroleum Systems in Rapidly-Subsiding Basins”: Book of Abstracts, Baku: Azerbaijan, 1996, pp. 6–9.

  9. Barker, C., Calculated volume and pressure changes during the thermal cracking of oil to gas in reservoirs, AAPG Bull., 1990, vol. 74, pp. 1254–1261.

    Google Scholar 

  10. Batalin, O.Yu. and Vafina, N.G., Condensation theory of oil formation, in Novye idei v geologii i geokhimii nefti i gaza: Aktual’nye problemy geologii i geokhimii nefti i gaza: Materialy VII mezhdunar. konf. (New Ideas in Oil and Gas Geology and Geochemistry: Proceedings of the VII International Conference), Moscow: GEOS, 2004, pp. 65–67.

  11. Batalin, O.Yu. and Vafina, N.G., Kondensatsionnaya model' obrazovaniya zalezhei nefti i gaza (Condensational Model of Oil and Gas Deposit Formation), Moscow: Nauka, 2008.

  12. Beskrovnyi, N.S., Gemp, S.D., and Shvarts, T.V., Glubinnye razlomy Zapadnoi Turkmenii i ikh rol' v formirovanii neftyanykh zalezhei (Deep Faults of Western Turkmenia and Their Role in the Formation of Oil Deposits), Leningrad: Gostoptekhizdat, 1963.

  13. Burgess, J.D., Microscopic examination of kerogen (dispersed organic matter) in petroleum exploration, Geol. Soc. Am. Spec. Pap., 1974, vol. 153, pp. 19–30.

    Google Scholar 

  14. Burlin, Yu.K. and Yakovlev, G.E., Basseinovyi analiz: Ucheb. posobie (Basin Analysis: A Study Guide), Moscow, 2002.

  15. Cathles, L., Raining hydrocarbons in the Gulf, Geotimes, June, 2003, pp. 6–7. http://www.geotimes.org/june03/ NN_gulf.html.

  16. Chudetskii, M.Yu., Indicators of bacterial involvement in the formation of hydrocarbon accumulations, Cand. Sci. (Geol.–Mineral.) Dissertation, Moscow, 2004.

  17. Cooles, G.P., Mackenzie, A.S., and Quigley, T.M., Calculation of petroleum masses generated and expelled from source rocks, Org. Geochem., 1986, vol. 10, nos. 1–3, pp. 235–245. https://doi.org/10.1016/0146-6380(86)90026-4

    Article  Google Scholar 

  18. Dickinson, W.R., Subduction and oil migration, Geology, 1974, vol. 2, no. 9, pp. 1519–1540.

    Google Scholar 

  19. Disler, V.N., The geochemical and geological role of condensation waters in gas-water-condensate and oil-gas-condensate fields, Dokl. Akad. Nauk SSSR, 1987, vol. 292, no. 3, pp. 708–712.

    Google Scholar 

  20. Düppenbecker, S.J., Dohmen, L., and Welte, D.H., Numerical modelling of petroleum expulsion in two areas of the Lower Saxony Basin, Northern Germany, Geol. Soc. London: Spec. Publ., 1991, vol. 59, pp. 47–64.

    Google Scholar 

  21. Eremenko, N.A. and Botneva, T.A., Deeply buried hydrocarbon deposits, Geol. Nefti Gaza, 1998, no. 1, pp. 6–11.

  22. Espitalié, J., Madec, M., Tissot, B., Mennig, J.J., and Leplat, P., Source rock characterization method for petroleum exploration, Proceedings of the 9th Annual Offshore Technology Conference, 1977, vol. 3, pp. 439–448.

  23. Faber, E., Zur isotopengeochemie gasförmiger Kohlenwasserstoffe, Erdöl, Erdgas, Kohle, 1987, vol. 103, no. 5, pp. 210–218.

    Google Scholar 

  24. Feyzullayev, A.A., Hydrocarbon regime mode of folded regions in connection with geochemical prospecting of oil and gas, Doctoral (Geol.–Mineral.) Dissertation, Baku, 1992.

  25. Feyzullayev, A.A., Solving various problems of oil and gas geology with the help of isotope data (on the example of the South Caspian basin), in Novye idei v geologii i geokhimii: Materialy Mezhdunar. konf. (New Ideas in Oil and Gas Geology and Geochemistry: Proceedings of International Conference), Moscow: GEOS, 2005, pp. 462–464.

  26. Feyzullayev, A.A., About retardation of physicochemical processes in overpressured sediments, South-Caspian basin, Azerbaijan, Nat. Sci., 2011, vol. 3, no. 5, pp. 359–364.

    Google Scholar 

  27. Feyzullayev, A.A., Generation and phase state of hydrocarbons at great depths, in 1st International Conference “Ultra Deep Hydrocarbon Potential: Future Energy Resources—Reality and Prediction”, Baku, Azerbaijan, 2012a, pp. 32–34.

  28. Feyzullayev, A.A., Mud volcanoes in the South Caspian basin: Nature and estimated depth of its products, Nat. Sci., 2012b, vol. 4, no. 7, pp. 445–453.

    Google Scholar 

  29. Feyzullayev, A.A., Migration pathways of hydrocarbons in South-Caspian basin, Geol. Geosci., 2013, vol. 2, no. 3, pp. 1–6.

    Google Scholar 

  30. Feyzullayev, A.A., Spatial heterogeneity of the South Caspian basin in the context of oil and gas capacity, Oil Gas J. Russ., 2014, no. 6, pp. 42–50.

  31. Feyzullayev, A.A., Depth of diagenetic processes and lower boundary of the biosphere in the South Caspian basin, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 8, pp. 811–827. https://doi.org/10.1134/S0001433820080034

    Article  Google Scholar 

  32. Feyzullayev, A.A. and Lerche, I., Occurrence and nature of overpressure in the sedimentary section of the South Caspian basin, Azerbaijan, Energy Explor. Exploit., 2009, vol. 27, no. 5, pp. 345–366.

    Google Scholar 

  33. Feyzullayev, A.A. and Lerche, I., Temperature–depth control of petroleum occurrence in the sedimentary section of the South Caspian basin, Petrol. Res., 2020, vol. 5, no. 1, pp. 70–76. https://doi.org/10.1016/j.ptlrs.2019.10.003

    Article  Google Scholar 

  34. Feyzullayev, A.A. and Movsumova, U.A., The nature of the isotopically heavy carbon of carbon dioxide and bicarbonates in the waters of mud volcanoes in Azerbaijan, Geochem. Int., 2010, vol. 48, no. 5, pp. 517–522.

    Google Scholar 

  35. Feyzullayev, A.A., Guliyev, I.S., and Tagiyev, M.F., Source potential of the Mesozoic–Cenozoic rocks in the South Caspian Basin and their role in forming the oil accumulations in the lower Pliocene reservoirs, Petrol. Geosci., 2001, vol. 7, no. 4, pp. 409–417.

    Google Scholar 

  36. Feyzullayev, A.A., Kadirov, F.A., and Kadyrov, A.G., Tectono-geophysical model of the southern Caspian in the context of the presence of oil and gas, Izv., Phys. Solid Earth, 2016, vol. 52, no. 6, pp. 913–923.

    Google Scholar 

  37. Galimov, E.M., Izotopy ugleroda v neftegazovoi geologii (Carbon Isotopes in Oil and Gas Geology), Moscow: Nedra, 1973.

  38. Galushkin, Yu.I., Numerical reconstructions of thermal evolution of sedimentary cover and underlying lithosphere in western part of the South Caspian basin, Mar. Petrol. Geol., 2017, vol. 88, pp. 1094–1108. https://doi.org/10.1016/j.marpetgeo.2017.09.035

    Article  Google Scholar 

  39. Gavrilov, V.P., Possible mechanism for natural reserve replacement in oil and gas fields, Geol. Nefti Gaza, 2008, no. 1, pp. 56–64.

  40. Gavrishin, A.I., Genesis of low mineralized soda waters in the Donets basin, Dokl. Earth Sci., 2005, vol. 405, no. 8, pp. 1183–1185.

    Google Scholar 

  41. Gas condensate, May 2, 2012. https://neftegaz.ru/tech-library/energoresursy-toplivo/141428-gazovyy-kondensat. Accessed July 16, 2021.

  42. Geologiya Azerbaidzhana (Geology of Azerbaijan), 8 vols., Alizade, A.A., Ed., vol. 7: Neft’ i gas (Oil and Gas), Baku: Nafta-Press, 2008.

  43. Goodwin, N.R.J., Abdullayev, N., Javadova, A., Volk, H., and Riley, G., Diamondoids and basin modeling reveal one of the world’s deepest petroleum systems, South Caspian basin, Azerbaijan, J. Petrol. Geol., 2020, vol. 43, no. 2, pp. 133–150.

    Google Scholar 

  44. Gorbatyi, Yu.E. and Bondarenko, G.V., Supercritical state of water, Sverkhkriticheskie Flyuidy: Teor. Prakt., 2007, vol. 2, no. 2, pp. 5–19.

    Google Scholar 

  45. Gorshkov, V.I., Paleothermal zonality of sedimentary strata, Neftegazov. Geol. Geofiz., 1978, no. 7, pp. 13–19.

  46. Guliyev, I. and Feyzullayev, A., Geochemistry of hydrocarbon seepages in Azerbaijan, in Hydrocarbon Migration and Its Near-Surface Expression, Schumacher, D. and Abrams, M., Eds., 1996, pp. 63–70.

    Google Scholar 

  47. Gurgey, K., Correlation, alteration, and origin of hydrocarbons in the GCA, Bahar, and Gum Adasy fields, Western South Caspian basin: Geochemical and multivariate statistical assessments, Mar. Petrol. Geol., 2003, vol. 20, no. 10, pp. 1119–1139.

    Google Scholar 

  48. Hansom, J. and Lee, M.K., Effects of hydrocarbon generation, basal heat flow and sediment compaction on overpressure development: A numerical study, Petrol. Geosci., 2005, vol. 11, pp. 353–360.

    Google Scholar 

  49. Hedberg, H.D., Methane generation and petroleum migration, in Problems of Petroleum Migration, Roberts, W.H. and Cordell, R.J., Eds., 1980, pp. 179–206. https://doi.org/10.1306/St10411C10.

  50. Hoefs, J., Stable Isotope Geochemistry (Minerals and Rocks), Berlin; Heidelberg: Springer, 1987.

    Google Scholar 

  51. Hovland, M., Fichler, Ch., Rueslåtten, H., and Johnsenb, H.K., Deep-rooted piercement structures in deep sedimentary basins: Manifestations of supercritical water generation at depth?, J. Geochem. Explor., 2006, vol. 89, nos. 1–3, pp. 157–160.

    Google Scholar 

  52. Hunt, J.M., Is there a geochemical depth limit for hydrocarbons?, Petrol. Eng., 1975, vol. 47, no. 3, pp. 112–127.

    Google Scholar 

  53. Ibragimov, A.B., Formation and location of oil and gas reservoirs in Neogene deposits of the West Turkmen Trough, Doctoral (Geol.–Mineral.) Dissertation, Moscow, 1998.

  54. Jackson, J., Priestley, K., Allen, M.B., and Berberian, M., Active tectonics of the South Caspian basin, Geophys. J. Int., 2002, vol. 148, pp. 214–245.

    Google Scholar 

  55. Jiang, D., Robbins, E.I., Wang, Y., and Yang, H., Mechanisms of petroleum migration, in Petrolipalynology, Springer, 2016, pp. 153–158. https://doi.org/10.1007/978-3-662-47946-9.

  56. Jin, M., Ma, S., Lei, T., and Xia, Y., Experiments on the primary migration of oil from source rocks, Chin. J. Geochem., 2007, vol. 26, no. 1, pp. 66–71.

    Google Scholar 

  57. Katz, K.J., Richards, D., Long, D., and Lawrence, W., A new look at the components of the petroleum system of the South Caspian basin, J. Petrol. Sci. Eng., 2000, vol. 28, pp. 161–182.

    Google Scholar 

  58. Kazmin, V.G. and Verzhbitskii, E.V., Age and origin of the South Caspian basin, Oceanology (Engl. Transl.), 2011, vol. 51, no. 1, pp. 131–140.

  59. Kerimov, K.M., Rakhmanov, R.R., and Kheirov, M.B., Neftegazonosnost’ Yuzhno-Kaspiiskoi megavpadiny (Oil and Gas Capacity of the South Caspian Megatrough), Baku: Adyl’-oglu press, 2001.

  60. Khain, V.E. and Sokolov, B.A., Continental margins as main oil and gas bearing regions of the Earth, Sov. Geol., 1984, no. 7, pp. 49–60.

  61. Knapp, C.C., Knapp, J.H., and Connor, J.A., Crustal-scale structure of the South Caspian basin revealed by deep seismic reflection profiling, Mar. Petrol. Geol., 2004, vol. 21, pp. 1073–1081.

    Google Scholar 

  62. Kolodii, V.V., The role of underground waters in the formation of oil deposits, in Gidrogeologiya i neftegazonosnost' (Hydrogeology and Oil and Gas Bearing Capacity), Minsk, 1982, pp. 25–46.

    Google Scholar 

  63. Koltermann, C.E. and Gorelick, S.M., Heterogeneity in sedimentary deposits: A review of structure-imitating, process-imitating, and descriptive approaches, Water Resour. Res., 1996, vol. 32, no. 9, pp. 2617–2658. https://doi.org/10.1029/96WR00025

    Article  Google Scholar 

  64. Kudel’skii, A.V., Genesis of hydrocarbon accumulations and hydrogeochemical zonality of oil and gas bearing basins, in Gidrogeokhimicheskaya zonal’nost' i neftegazonosnost' (Hydrogeochemical Zonality of Oil and Gas Bearing Capacity), Moscow: Nauka, 1988, pp. 27–30.

  65. Landes, K.K., Petroleum Geology, New York: Krieger, 1975.

    Google Scholar 

  66. Larin, V.I., Kolichestvennaya otsenka protsessov gazonakopleniya (Quantitative Assessment of Gas Accumulation Processes), Moscow: Nedra, 1982.

  67. Lebedev, L.I., Influence of tectonic factors on oil and gas capacity of inland seas, Geol. Nefti Gaza, 1994, no. 7.

  68. Leythauser, D. and Poelchau, H.S., Expulsion of petroleum from type III kerogen source rocks in gaseous solution: Modeling of solubility fractionation, in Petroleum Migration, England, W.A. and Fleet, A.J., Eds., London: Geological Society, 1991, pp. 33–46.

    Google Scholar 

  69. Leythauser, D., Radke, M., and Schaefer, R.G., Efficiency of petroleum expulsion from shale source rocks, Nature, 1984, vol. 311, pp. 745–748.

    Google Scholar 

  70. Luo, X., Li, J., Sun, F.J., et al., The origin of deep layer gases in the Jiyang Depression of Bohaibay Basin, China, J. Geochem. Explor., 2009, vol. 101, no. 1, p. 66.

  71. Márquez, X.M. and Mountjoy, E.W., Microfractures due to overpressures caused by thermal cracking in well-sealed upper Devonian reservoirs, Deep Alberta Basin, AAPG Bull., 1996, vol. 80, no. 4, pp. 570–588.

    Google Scholar 

  72. Mammadov, P.Z., The subsidence evolution of the South Caspian basin, in Caspian and Black Sea Geosciences Conference 2008: Abstract Book of Meeting, Held 6–8 October 2008, Baku, Azerbaijan, Houten, the Netherlands: EAGE, 2008, A11.

  73. McCain, W.D. and Bridges, B., Volatile oils and retrograde gases: What’s the difference, Petrol. Eng. Int., 1994, vol. 66, no. 1, pp. 35–36.

    Google Scholar 

  74. Mekhtiev, Sh.F. and Gorin, V.A., Direct vertical migration of oil and its Pliocene and Anthropogene phases of the Absheron Peninsula, Uch. Zap. Azerb. Gos. Univ., Ser. Geol.-Geogr. Nauk, 1961, no. 6, pp. 7–13.

  75. Namiot, A.Yu., Fazovye ravnovesiya v dobyche nefti (Phase Equilibriums in Oil Extraction), Moscow: Nedra, 1976.

  76. Nikanorov, A.M. and Shalaev, L.N., The use of moisture removal in the practice of oil-field hydrogeological investigations, Geol. Nefti Gaza, 1973, no. 10, pp. 59–63.

  77. O Tek Ho, Geochemical criteria for separate forecasting of predominant oil and gas accumulation zones in young troughs (on the example of the western side of the South Caspian trough), Cand. Sci. (Geol.–Mineral.) Dissertation, Baku, 1984.

  78. Paterson, A.M. and Arneson, A.A., Geology of Pembina field, AAPG Bull., 1957, vol. 41, no. 5, pp. 937–949.

    Google Scholar 

  79. Peters, K.E., Guidelines for evaluating petroleum source rock using programmed pyrolysis, AAPG Bull., 1986, vol. 70, pp. 318–329.

    Google Scholar 

  80. Peters, K.E., Walters, C.C., and Moldowan, J.M., The Biomarker Guide, Cambridge: Cambridge Univ. Press, 2005.

    Google Scholar 

  81. Petrenko, N.V., Petrenko, V.G., Khadykin, V.D., and Shchugorev, V.I., Vzaimosvyaz’ prirodnykh gazov i vody (Interrelation of Natural Gases and Water), Moscow: Nedra, 1995.

  82. Petrenko, V.I., On the geological–physical and geochemical role of water vapor of gas-vapor mixtures in terms of the global link between natural gases and water, Vestn. Sev.-Kavk. Gos. Tekh. Univ., 2005, no. 1, pp. 3–6.

  83. Petrenko, V.I., The geological–physical and geochemical role of gas-evaporated moisture of natural gas-vapor mixtures, Tekhnol. Nefti Gaza, 2011, no. 4, pp. 48–55.

  84. Petrenko, V.I., Schugorev, V.D., Petrenko, N.V., and Beletskaya, S.N., Mechanism of liquid hydrocarbon gas-phase transfer, in Abstracts of 18th International Organic Geochemistry Conference, Amsterdam: Pergamon, 1997, pp. 169–170.

  85. Petrenko, V.I., Petrenko, N.V., and Zlenko, V.Ya., On the geological–physical and geochemical role of gas-evaporated moisture. Science and technologies, Razved. Razrab., Ser.: Neft’ Gaz, 2009, no. 2, pp. 44–55. http://www.neftegaz.ru/science/view/382.

  86. Petrenko, V.I., Krasil’nikova, O.V., Petrenko, N.N., and Petrenko, I.N., Mass transfer of chemical elements by fluids in the development of hydrocarbon fields, in Degazatsiya Zemli: Geotektonika, geodinamika, geoflyuidy, neft' i gaz, uglevodorody i zhizn': Materialy Vseros. konf. s mezhdunar. uchastiem, posvyashchennoi 100-letiyu so dnya rozhdeniya P.N. Kropotkina (Degassing of The Earth: Geotectonic, Geodynamics, Geofluids, Oil and Gas, Hydrocarbons, and Life: Proceedings of the All-Russian Conference with International Attendance in Commemoration of the 100th Anniversary of P.N. Kropotkin), Dmitrievskii, A.N. and Valyaev, B.M., Eds., Moscow, 2010, pp. 403–405

  87. Philip, H., Cisternas, A., Gvishiani, A., and Gorshkov, A., The Caucasus: An actual example of the initial stages of continental collision, Tectonophysics, 1989, vol. 161, pp. 1–21.

    Google Scholar 

  88. Ping, H., Chen, H., Song, G., and Liu, H., Oil cracking of deep petroleum in Minfeng Sag in North Dongying Depression, Bohai Bay Basin, China: Evidence from natural fluid inclusions, J. Earth Sci., 2010, vol. 21, no. 4, pp. 455–470. https://doi.org/10.1007/s12583-010-0107-z

    Article  Google Scholar 

  89. Pol’ster, L.A., Viskovskii, Yu.A., Nikolenko, V.A., and Shustova, L.G., Thermobaric conditions for the formation of oil and gas deposits at large depths in Cenozoic subsidence regions, Geol. Nefti Gaza, 1981, no. 3, pp. 3–11.

  90. Price, L.C., Primary petroleum migration from shales with oxygen-rich organic matter, J. Petrol. Geol., 1979, vol. 12, pp. 289–324.

    Google Scholar 

  91. Price, L.C., Organic geochemistry of core samples from an ultradeep hot well (300°C, 7 km), Chem. Geol., 1982, vol. 37, nos. 3–4, pp. 215–228.

    Google Scholar 

  92. Quigley, T.M. and Mackenzie, A.S., The temperatures of oil and gas formation in the sub-surface, Nature, 1988, vol. 333, pp. 549–552.

    Google Scholar 

  93. Radchenko, V.V., Features of phase transitions in water-containing hydrocarbon systems under various thermobaric conditions, Cand. Sci. (Engineering) Dissertation, Moscow, 2000.

  94. Sakvarelidse, E., The thermal regime of the crust of the black sea, Intergov. Oceanogr. Comm. Workshop Rep., 2001, vol. 175, pp. 27–28.

    Google Scholar 

  95. Sarmuldaeva, M.X., Hydrochemical zonality of stratal water in the fields of the Peschanomyssk–Rakushechnaya elevation zone, Geol. Nefti Gaza, 1988, no. 6, pp. 50–52.

  96. Savchenko, V.P., Formation of oil and gas deposits, Neft. Khoz., 1952, no. 5, pp. 32–37.

  97. Sokolov, B.A. and Ablya, E.A., Flyuidodinamicheskaya model' neftegazoobrazovaniya (Fluid-Dynamic Model of Oil and Gas Formation), Moscow: GEOS, 1999.

  98. Sultanov, B.I., Deep condensate waters in gas-condensate fields and conditions of their formation, Dokl. Akad. Nauk Azerb. SSR, 1961, vol. 17, no. 12, pp. 1165–1167.

    Google Scholar 

  99. Sun, L., Zou, C., Zhu, R., Zhang, Y., Zhang, Sh., Zhang, B., Zhu, G., and Gao, Z., Formation, distribution and potential of deep hydrocarbon resources in China, Petrol. Explor. Dev., 2013, vol. 40, no. 6, pp. 687–695.

    Google Scholar 

  100. Tegelekov, K.M., Geological and geochemical features of Pliocene deposits of southwestern Turkmenistan in terms of oil and gas bearing capacity, Extended Abstract of Doctoral (Geol.–Mineral.) Dissertation, Ashkhabad, 1971.

  101. Tegelekov K.M. Neftegazonosnost’ Yugo-Zapadnogo Turkmenistana (Oil and Gas Bearing Capacity of Southwestern Turkmenistan), Mekhtiev, Sh.F., Ed., Alma-Ata: Ylym, 1984.

  102. The origin and extraction of gas condensate, January 17, 2019. https://oilselling.ru/2019/01/17/proishozhdenie-gazovogo-kondensata/. Accessed July 16, 2021.

  103. Tissot, B.P. and Welte, D.H., Petroleum Formation and Occurrence, Berlin: Springer, 1984.

    Google Scholar 

  104. Ungerer, P. Burrus, J., Doligez, B., Chenet, P.Y., and Bessis, P., Evaluation des bassins par modélisation intégrée en deux dimensions des transferts thermiques, de l'écoulement des fluides, de la génèse et de la migration des hydrocarbures, Rev. Inst. Fr. Petrol., 1991, vol. 46, no. 1, pp. 3–39.

    Google Scholar 

  105. Uspenskii, V.A., Vvedenie v geokhimiyu nefti (Introduction to Oil Geochemistry), Leningrad: Nedra, 1970.

  106. Valyaev, B.M., Titkov, G.A., and Chudetskii, M.Yu., Genesis of light-isotope methane in hydrocarbon accumulations, in Degazatsiya Zemli i genezis uglevodorodnykh flyuidov i mestorozhdenii (The Earth’s Degassing and Genesis of Hydrocarbon Fluids and Fields), Moscow: GEOS, 2002, pp. 108–134.

  107. van Krevelen, D.W., Graphical–statistical method for the study of structure and reaction processes of coal, Fuel, 1950, vol. 29, pp. 269–284.

    Google Scholar 

  108. Vassoevich, N.B., The structural scheme of vertical zonality in the generation of hydrocarbon gases and oil, Izv. Akad. Nauk SSSR, Ser. Geol., 1974, no. 5, pp. 123–135.

  109. Vsevolozhskii, V.A. and Kireeva, T.A., Influence of deep gas-vapor fluids on the formation of the composition of stratal waters of oil and gas fields, Vestn. Mosk. Univ., Ser. 4: Geol., 2010, no. 3, pp. 57–62.

  110. Wang, T., Geng, A., Xiong, Y., et al., Mass balance calculation of the pyrolysates generated from marine crude oil: A prediction model of oil cracking gas resources based on solid bitumen in reservoir, Chin. Sci. Bull., 2007, vol. 52, pp. 1532–1539. https://doi.org/10.1007/s11434-007-0226-9

    Article  Google Scholar 

  111. Wang, Y., Zhang, Sh., Wang, F., Wang, Zh., Zhao, Ch., Wang, H., Liu, J., Lu, J., Geng, A., and Liu, D., Thermal cracking history by laboratory kinetic simulation of Paleozoic oil in Eastern Tarim Basin, Nw China, implications for the occurrence of residual oil reservoirs, Org. Geochem., 2006, vol. 37, pp. 1803–1815.

    Google Scholar 

  112. Welte, D.H., Horsfield, B., and Baker, D.R., Petroleum and Basin Evolution: Insights from Petroleum Geochemistry, Geology and Basin Modeling, Springer, 1997.

    Google Scholar 

  113. Yakhimovich, N.N., Study of migration forms and composition change regularities of hydrocarbons in the South Caspian trough, Geol. Neftegazonosn. Turkm., 1978, no. 4, pp. 65–72.

  114. Zhao, W., Wang, Z., Zhang, S., Wang, H., and Wang, Y., Oil cracking: An important way for highly efficient generation of gas from marine source rock kitchen, Chin. Sci. Bull., 2005, vol. 50, pp. 2628–2635.

    Google Scholar 

  115. Zhuze, T.P., Yushkevich, G.N., and Ushakov, G.S., General regularities of the behavior of oil and gas systems at large depths, Dokl. AN SSSR. 1963, vol. 152, no. 3, pp. 713–716.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Feyzullayev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feyzullayev, A.A. Sedimentary-Condensation Model of Formation of Hydrocarbon Fields in the South Caspian Basin. Izv. Atmos. Ocean. Phys. 57, 1349–1366 (2021). https://doi.org/10.1134/S0001433821100042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821100042

Keywords:

Navigation