Skip to main content
Log in

GIS-Oriented Database for the System Analysis and Prediction of the Geodynamic Stability of the Nizhne-Kansky Massif

  • METHODS AND PROCESSING TOOLS AND INTERPRETATION OF SPACE INFORMATION
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In 2019, the construction of an underground research laboratory for justifying the geoecological safety of the disposal of highly active radioactive waste within the granite-gneiss rocks of the Nizhne-Kansky massif (Krasnoyarsk krai) began. To estimate and predict the geodynamic stability of tectonic crustal blocks, a specialized database on the basis of ESRI ArcGIS software has been created and is under development. Starting from it, the geospatial data of multidisciplinary research, including the original results of GNSS observations and data of Earth’s remote sensing (ERS), were systematized. At present, the GIS-oriented database contains 12 thematic layers of data, as well as intellectual algorithmic modules for analysis, which are written in Python. The use of original algorithms of system analysis allows ERS data interpretation and geodynamic danger estimation for different parameters. A kinematic model of the modern movements and stress-strain state of structural blocks of the Nizhne-Kansky massif is developed from results of GPS/GLONASS observations over velocities of the present-day crustal motion. The joint interpretation of the scheme of tectonic faults and the SRTM-4 digital elevation model, constructed by ERS data, is performed for the geodynamic zoning of the territory of the Nizhne-Kansky massif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Anderson, E.B., Belov, S.V., Kamnev, E.N., Kolesnikov, I.Yu., Lobanov, N.F., Morozov, V.N., and Tatarinov, V.N., Podzemnaya izolyatsiya radioaktivnykh otkhodov (Underground Isolation of Radioactive Waste), Moscow: Gornaya kniga, 2011.

  2. Batugin, A.S., Classification of sections of the Earth’s crust according in terms of geodynamic hazard, in Metodika i tekhnika vedeniya marksheiderskikh i geologicheskikh rabot na shakhtah i razrezakh (Methods and Techniques for Mine Surveying and Geological Operations in Mines and Sections), St. Petersburg: VNIMI, 1997, pp. 206–213.

  3. Bondur, V.G. and Zverev, A.T., A method of earthquake forecast based on the lineament analysis of satellite images, Dokl. Earth Sci., 2005a, vol. 402, no. 4, pp. 561–567.

    Google Scholar 

  4. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., Lapshin, V.M., and Nechaev, Yu.V., Connection between variations of the stress-strain state of the Earth’s crust and seismic activity: The example of Southern California, Dokl. Earth. Sci., 2010, vol. 430, no. 3, pp. 147–150.

    Article  Google Scholar 

  5. Busygin, B.S. and Nikulin, S.L., Relationship between satellite image lineaments and earthquake epicenters within the Baikal Rift zone, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2016, vol. 13, no. 4, pp. 219–230.

    Article  Google Scholar 

  6. Disposal of Radioactive Waste, Specific Safety Requirements SSR-5 (IAEA Safety Standards), Vienna: International Atomic Energy Agency, 2011.

  7. Dzeboev, B.A., Gvishiani, A.D., Belov, I.O., Agayan, S.M., Tatarinov, V.N., and Barykina, Y.V., Strong-earthquake-prone areas recognition based on an algorithm with a single pure training class: I. Altai–Sayan–Baikal region, M ≥ 6.0), Izv., Phys. Solid Earth, 2019, vol. 55, no. 4, pp. 563–575.

    Article  Google Scholar 

  8. ESRI Shapefile Technical Description, Redlands, Calif.: ESRI, 1998.

  9. Gitis, V.G. and Ermakov, B.V., Osnovy prostranstvenno–vremennogo prognozirovaniya v geoinformatike (Basics of Spatial and Temporal Prediction in Geoinformatics), Moscow: Fizmatlit, 2004.

  10. Gvishiani, A.D., Dzeboev, B.A., and Agayan, S.M., A new approach to recognition of strong earthquake-prone areas in the Caucasus, Izv., Phys. Solid Earth, 2013, vol. 49, no. 6, pp. 747–766. https://doi.org/10.1134/S1069351313060049

    Article  Google Scholar 

  11. Gvishiani, A.D., Kaftan, V.I., Krasnoperov, R.I., Tatarinov, V.N., and Vavilin, E.V., Geoinformatics and systems analysis in geophysics and geodynamics, Izv., Phys. Solid Earth, 2019a, vol. 55, no. 1, pp. 33–49. https://doi.org/10.1134/S1069351319010038

    Article  Google Scholar 

  12. Gvishiani, A.D., Agayan, S.M., and Bogoutdinov, Sh.R., Investigation of systems of real functions on two-dimensional grids using fuzzy sets, Chebyshevskii Sb., 2019b, vol. 20, no. 1, pp. 94–111. https://doi.org/10.22405/2226-8383-2019-20-1. http://gptl.ru/.

  13. Kaftan, V.I., Gvishiani, A.D., Morozov, V.N., and Tatarinov, V.N., Methods and results of determining the Earth’s crust movements and deformations according to GNSS data for a geodynamic landfill in the area of radioactive waste disposal), Sovrem. Probl. Distantsionnogo Zondirovaniya Kosmosa, 2019, no. 1, pp. 83–94. https://doi.org/10.21046/2070-7401-2019-16-83-94

  14. Kagan, A.I., Morozov, V.N., and Tatarinov, V.N., RF inventor’s certificate no. 2014621299, Sep. 15, 2014.

  15. Kochkin, B.T., Mal’kovskii, V.I., and Yudintsev, S.V., Nauchnye osnovy otsenki bezopasnosti geologicheskoi izolyatsii dolgozhivushchikh radioaktivnykh otkhodov (Eniseiskii proekt) (Scientific Bases of Safety Assessment of the Geological Isolation of Long-Lived Radioactive Waste (the Yenisei Project), Moscow: IGEM RAS, 2017.

  16. Krasnoperov, R.I. and Soloviev, A.A., Analytical geoinformation system for integrated geological–geophysical research in Russia, Gorn. Zh., 2015, vol. 10, pp. 89–93. https://doi.org/10.17580/gzh.2015.10.16.B-019-17

    Article  Google Scholar 

  17. Lobatskaya, R.M., Neotectonic fault-block structure of the joint zone of the Siberian platform and the West Siberian plate], Geol. Geofiz., 2005, vol. 46, no. 2, pp. 141–150.

    Google Scholar 

  18. Manevich, A.I. and Tatarinov, V.N., Application of artificial neural networks for predicting modern movements of the Earth’s crust, Issled. Geoinf.: Tr. Geofiz. Tsentra Ross. Akad. Nauk, 2017, vol. 5, no. 2, pp. 37–47. https://doi.org/10.2205/2017BS045

    Article  Google Scholar 

  19. Mazurov, B.T. and Kaftan, V.I., Review of the development of geodynamic and geodetic methods for solving geodynamic problems, Geod. Kartogr., 2020, no. 2, pp. 25–39. https://doi.org/10.22389/0016-7126-2020-956-2-25-39.

  20. Morozov, V.N. and Tatarinov, V.N., Selecting areas of the Earth’s crust for the disposal of environmentally hazardous waste, Geoekologiya, 1996, no. 6, pp. 109–120.

  21. Morozov, V.N., Belov, S.V., Kolesnikov, M.Yu., Tatarinov, V.N., and Tatarinova, T.A., Possibilities of geodynamic zoning when selecting places of underground isolation of high-level radioactive waste on the example of the Nizhnekansky massif, Inzh. Ekol., 2008, no. 5, pp. 17–25.

  22. Morozov, O.A., Rastorguev, A.V., and Neuvazhaev, G.D., Assessment of the state of the geological environment of the Yenisei section (Krasnoyarsk Territory), Radioakt. Otkhody, 2019a, no. 4, pp. 46–62. https://doi.org/10.25283/2587-9707-2019-4-46-62

  23. Morozov, V.N., Tatarinov, V.N., Manevich, A.I., and Losev, I.V., Analogy method to determine the stress-strain state of structural-tectonic blocks of the Earth’s crust for the disposal of radioactive waste, Russ. J. Earth Sci., 2019b, no. 19, ES6001. https://doi.org/10.2205/2019ES000687

  24. Nikolaev, N.I., Noveishaya tektonika i geodinamika litosfery (Recent Tectonics and Geodynamics of the Lithosphere), Moscow: Nedra, 1988.

  25. Petrov, V.A., Veselovskii, A.V., and Kuzmina, D.A., GIS-based modeling and monitoring of geodynamic conditions, Nauchn. Obozr., 2014, no. 8, pp. 133–138.

  26. Quade, E.S., Analysis for Military Decisions, Amsterdam: North Holland, 1966; Moscow: Sovetskoe radio, 1969.

  27. RB-019-17. Rukovodstvo po bezopasnosti pri ispol’zovanii atomnoi energii. Otsenka iskhodnoi seismichnosti raiona i ploshchadki razmeshcheniya ob"ekta ispol’zovaniya atomnoi energii pri inzhenernykh izyskaniyakh i issledovaniyakh (Safety Guide for the Use of Nuclear Energy. Assessment of the Initial Seismicity of the Nuclear Facility Area for Engineering Surveys and Investigations), Moscow: Rostekhnadzor, 2017.

  28. Sistemnyi analiz i matematicheskoe modelirovanie slozhnykh ekologicheskikh i ekonomicheskikh sistem. Teoreticheskie osnovy i prilozheniya (Systems Analysis and Mathematical Modeling of Complex Environmental Systems. Theoretical Bases and Applications), Surkov, F.A. and Selyutin, V.V., Eds., Izd. Yuzhnogo fed. univ., 2015.

  29. Soloviev, An.A., Soloviev, Al.A., Gvishiani, A.D., Nikolova, Yu.I., and Nikolov, B.P., GIS-oriented database on seismic hazard assessment for Caucasian and Crimean regions, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 9, pp. 1363–1373. https://doi.org/10.1134/S0001433818090505

    Article  Google Scholar 

  30. Tatarinov, V.N., Morozov, V.V., Kolesnikov, I.Yu., et al., Stability of the geological environment as the basis for safe underground isolation of radioactive waste and spent nuclear fuel, Nadezhnost Bezop. Energ., 2014, no. 1, pp. 25–29.

  31. Tatarinov, V.N., Kaftan, V.I., Morozov, V.N., Manevich, A.I., and Tatarinova, T.A., RF Inventor’s certificate no. 16620856, June 27, 2016.

  32. Tatarinov, V.N., Morozov, V.N., Kaftan, V.I., and Manevich, A.I., Modern geodynamics of the southern part of the Yenisei Ridge according to satellite observations, Geofiz. Issled., 2018, vol. 19, no. 4, pp. 64–79. https://doi.org/10.21455/gr2018.4-5

    Article  Google Scholar 

  33. Tatarinov, V.N., Morozov, V.N., Kaftan, V.I., Manevich, A.I., and Tatarinova, T.A., Underground research laboratory: Problems of geodynamic research, Radioakt. Otkh-ody, 2019, no. 1, pp. 77–89.

  34. The Roscosmos Geoportal. Satellite image service. URL: http://gptl.ru/

Download references

ACKNOWLEDGMENTS

Equipment and materials were provided by the Analytical Center for Geomagnetic Data (Center for Collective Use) of the Geophysical Center of the Russian Academy of Sciences (http://ckp.gcras.ru/).

Funding

This work was supported by the Russian Science Foundation, project no. 18-17-00241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Losev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gvishiani, A.D., Tatarinov, V.N., Kaftan, V.I. et al. GIS-Oriented Database for the System Analysis and Prediction of the Geodynamic Stability of the Nizhne-Kansky Massif. Izv. Atmos. Ocean. Phys. 57, 1151–1161 (2021). https://doi.org/10.1134/S0001433821090486

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821090486

Keywords:

Navigation