Skip to main content
Log in

Dynamic Processes of the Arctic Stratosphere in the 2020–2021 Winter

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The Arctic stratosphere winter season of 2020–2021 was characterized by a weakened stratospheric polar vortex as a result of a major sudden stratospheric warming (SSW) in early January. After the SSW, which persisted for about 3 weeks, and until the end of the winter season, the lower stratosphere temperature inside the stratospheric polar vortex remained higher than required for the formation of polar stratospheric clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Baldwin, T. Birner, G. Brasseur, J. Burrows, N. Butchart, R. Garcia, M. Geller, L. Gray, K. Hamilton, N. Harnik, M. Hegglin, U. Langematz, A. Robock, K. Sato, and A. Scaife, “100 years of progress in understanding the stratosphere and mesosphere,” Meteorol. Monogr. 59 (1), 27-1–27-62 (2019).

  2. M. Baldwin, B. Ayarzaguena, T. Birner, N. Butchart, A. Butler, A. Charlton-Perez, D. Domeisen, C. Garfinkel, H. Garny, E. Gerber, M. Hegglin, U. Langematz, and N. Pedatella, “Sudden stratospheric warmings,” Rev. Geophys. 58, e2020RG000708 (2021).

  3. D. Domeisen, C. Grams, and L. Papritz, “The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events,” Weather Clim. Dyn. 1, 373–388 (2020).

    Google Scholar 

  4. A. Butler, J. Sjoberg, D. Seidel, and K. Rosenlof, “A sudden stratospheric warming compendium,” Earth System Sci. Data 9, 63–76 (2017).

    Google Scholar 

  5. N. Calvo, L. Polvani, and S. Solomon, “On the surface impact of Arctic stratospheric ozone extremes,” Environ. Res. Lett. 10, 094003 (2015).

    Google Scholar 

  6. J. P. Sjoberg and T. Birner, “Stratospheric wave-mean flow feedbacks and sudden stratospheric warmings in a simple model forced by upward wave activity flux,” J. Atmos. Sci. 71, 4055–4071 (2014).

    Google Scholar 

  7. A. Pogoreltsev, E. Savenkova, O. Aniskina, T. Ermakova, W. Chen, and K. Wei, “Interannual and intraseasonal variability of stratospheric dynamics and stratosphere–troposphere coupling during northern winter,” J. Atmos. Sol.-Terr. Phys. 136, 187–200 (2015).

    Google Scholar 

  8. G. Manney, M. Santee, M. Rex, N. Livesey, M. Pitts, P. Veefkind, E. Nash, I. Wohltmann, R. Lehmann, L. Froidevaux, L. Poole, M. Schoeberl, D. Haffner, J. Davies, V. Dorokhov, et al., “Unprecedented Arctic ozone loss in 2011,” Nature 478, 469–475 (2011).

    Google Scholar 

  9. Z. Lawrence, J. Perlwitz, A. Butler, G. Manney, P. Newman, S. Lee, and E. Nash, “The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic oscillation and ozone loss,” J. Geophys. Res. 125 (22), e2020JD033271 (2020).

  10. G. Manney, N. Livesey, M. Santee, Z. Lawrence, A. Lambert, L. Millan, and R. Fuller, “Record low Arctic stratospheric ozone in 2020: MLS polar processing observations compared with 2016 and 2011,” Geophys. Res. Lett. 47, e2020GL089063 (2020).

  11. N. D. Tsvetkova, P. N. Vargin, A. N. Lukyanov, B. M. Kiryushov, V. A. Yushkov, and V. U. Khattatov, “Chemical destruction of ozone and dynamical processes in the Arctic stratosphere in the 2019–2020 winter,” Russ. Meteorol. Hydrol. No. 5 (2021).

  12. S. P. Smyshlyaev, P. N. Vargin, A. N. Lukyanov, N. D. Tsvetkova, and M. A. Motsakov, “Dynamical and chemical processes contributing to ozone loss in the exceptional Arctic stratosphere winter–spring of 2020,” Atmos. Chem. Phys. Discuss. (2021). https://doi.org/10.5194/acp-2021-11

  13. I. Wohltmann, P. Gathen, R. Lehmann, M. Maturilli, H. Deckelmann, G. L. Manney, J. Davies, D. Tarasick, N. Jepsen, R. Kivi, N. Lyall, M. Rex, “Near-complete local reduction of Arctic stratospheric ozone by severe chemical loss in spring 2020,” Geophys. Res. Lett. 47, e2020GL089547 (2020).

  14. Ch. Zulicke and E. Becker, “The structure of the mesosphere during sudden stratospheric warmings in a global circulation model,” J. Geophys. Res.: Atmos. 118, 2255–2271 (2013).

    Google Scholar 

  15. V. Yu. Ageeva, A. N. Gruzdev, A. S. Elokhov, I. I. Mokhov, and N. E. Zueva, “Sudden stratospheric warmings: Statistical characteristics and influence on NO2 and O3 total contents,” Izv., Atmos. Ocean. Phys. 53 (5) 477–486 (2017).

    Google Scholar 

  16. D. Domeisen, A. Butler, A. Charlton-Perez, B. Ayarzaguena, M. Baldwin, E. Dunn-Sigouin, J. Furtado, C. Garfinkel, P. Hitchcock, A. Karpechko, H. Kim, J. Knight, A. Lang, E-P. Lim, A. Marshall, et al., “The role of the stratosphere in subseasonal to seasonal prediction: 1. Predictability of the stratosphere,” J. Geophys. Res.: Atmos. 125 (2) e2019JD030920 (2020).

  17. N. D. Tsvetkova, A. S. Vyzankin, P. N. Vargin, A. N. Lukyanov, and V. A. Yushkov, “Investigation and forecast of sudden stratospheric warming events with chemistry climate model SOCOL,” IOP Conf. Ser., Earth Environ. Sci. 606, 012062 (2020). https://doi.org/10.1088/1755-1315/606/1/012062.

  18. R. Garcia, J. Yue, and J. Russell, “Middle atmosphere temperature trends in the twentieth and twenty-first centuries simulated with the Whole Atmosphere Community Climate Model (WACCM),” J. Geophys. Res.: Space Phys. 124, 7984–7993 (2019).

    Google Scholar 

  19. Scientific Assessment of Ozone Depletion 2018; Global Ozone Research and Monitoring Project, WMO Report No. 58 (World Meteorological Organization, Geneva, Switzerland, 2018).

  20. WMO Press-release. https://public.wmo.int/en/media/ news/extreme-weather-hits-usa-europe.

  21. C. Wright, R. Hall, T. Banyard, N. Hindley, D. Mitchell, and W. Seviour, “Dynamical and surface impacts of the January 2021 sudden stratospheric warming in novel Aeolus wind observations, MLS and ERA5,” Weather Clim. Dyn. Discuss. (2021).

  22. S. H. Lee, “The January 2021 sudden stratospheric warming,” Weather 76 (4), 135–136 (2021).

    Google Scholar 

  23. E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, et al., “The NCEP/NCAR 40-year reanalysis project,” Bull. Am. Meteorol. Soc. 77, 437–470 (1996).

    Google Scholar 

  24. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, et al., “The ERA5 global reanalysis 1999–2049,” Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  25. R. Plumb, “On the three-dimensional propagation of stationary waves,” J. Atmos. Sci. 42, 217–229 (1985).

    Google Scholar 

  26. D. W. Thompson and J. M. Wallace, “Arctic oscillation signature in wintertime geopotential height and temperature fields,” Geophys. Res. Lett., 25, 1297–1300 (1998).

    Google Scholar 

  27. M. P. Baldwin and D. W. Thompson, “A critical comparison of stratosphere–troposphere coupling indices,” Q. J. R. Meteorol. Soc. 135, 1661–1672 (2009).

    Google Scholar 

  28. J. Perlwitz and N. Harnik, “Downward coupling between the stratosphere and troposphere: The relative roles of wave and zonal mean processes,” J. Clim. 17, 4902–4909 (2004).

    Google Scholar 

  29. R. Gelaro, W. McCarty, M. J. Suarez, R. Todling, A. Molod, L. Takacs, C. Randles, A. Darmenov, M. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, et al., “The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2),” J. Clim. 30, 5419–5454 (2017).

    Google Scholar 

  30. https://ozonewatch.gsfc.nasa.gov/meteorology/temp_ 2020_MERRA2_NH.html.

  31. https://www.cpc.ncep.noaa.gov/products/precip/CWlink/ daily_ao_index/ao.shtml.

  32. M. L. Smith and A. J. McDonald, “A quantitative measure of polar vortex strength using the function M,” J. Geophys. Res.: Atmos. 119, 5966–5985 (2014).

    Google Scholar 

  33. R. T. Sutton, H. MacLean, R. Swinbank, A. O’Neill, and F. W. Taylor, “High-resolution stratospheric tracer fields estimated from satellite observations using Lagrangian trajectory calculations,” J. Atmos. Sci. 51, 2995–3005 (1994).

    Google Scholar 

  34. A. N. Lukyanov, P. N. Vargin, and V. A. Yushkov, “Lagrange studies of anomalously stable Arctic stratospheric vortex observed in winter 2019–2020,” Izv., Atmos. Ocean. Phys. 57 (3), 247–253 (2021).

    Google Scholar 

  35. D. I. Domeisen, C. I. Garfinkel, and A. H. Butler, “The teleconnection of El Niño Southern Oscillation to the stratosphere,” Rev. Geophys. 57, 5–47 (2019).

    Google Scholar 

  36. J. R. Holton and H.-C. Tan, “The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere,” J. Meteorol. Soc. Jpn. 60, 140–148 (1982).

    Google Scholar 

  37. C. Schwartz and C. I. Garfinkel, “Relative roles of the MJO and stratospheric variability in North Atlantic and European winter climate,” J. Geophys. Res.: Atmos. 122, 4184–4201 (2017).

    Google Scholar 

  38. C. Garfinkel, J. Benedict, and E. Maloney, “Impact of the MJO on the boreal winter extratropical circulation,” Geophys. Res. Lett. 41, 6055–6062 (2014).

    Google Scholar 

  39. P. Zhang, Y. Wu, and K. L. Smith, “Prolonged effect of the stratospheric pathway in linking Barents–Kara Sea ice variability to the mid-latitude circulation in a simplified model,” Clim. Dyn. 50, 527–539 (2018).

    Google Scholar 

  40. K. Hoshi, J. Ukita, M. Honda, T. Nakamura, K. Yamazaki, Y. Miyoshi, and R. Jaiser, “Weak stratospheric polar vortex events modulated by the Arctic sea-ice loss,” J. Geophys. Res. 124, 858–869 (2019).

    Google Scholar 

  41. A. Butler, D. Seidel, S. Hardiman, N. Butchart, T. Birner, and A. Match, “Defining sudden stratospheric warmings,” Bull. Am. Meteorol. Soc., 1913–1928 (2015).

  42. G. Manney, Z. Lawrence, M. Santee, W. Read, N. Livesey, A. Lambert, L. Froidevaux, H. Pumphrey, and M. Schwartz, “A minor sudden stratospheric warming with a major impact: Transport and polar processing in the 2014/2015 Arctic winter,” Geophys. Res. Lett. 42, 7808–7816 (2015).

    Google Scholar 

  43. P. Hitchcock, T. Shepherd, and G. Manney, “Statistical characterization of Arctic polar-night jet oscillation events,” J. Clim. 26, 2096–2116 (2013).

    Google Scholar 

  44. K. Kodera, H. Mukougawa, P. Maury, M. Ueda, and C. Claud, “Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation,” J. Geophys. Res.: Atmos. 121, 80–94 (2016).

    Google Scholar 

  45. S. Colucci and T. Ehrmann, “Synoptic–dynamic climatology of the Aleutian high,” J. Atmos. Sci. 75, 1271–1283 (2018).

    Google Scholar 

  46. D. W. Thompson and J. M. Wallace, “Annular modes in the extratropical circulation. Part I: Month-to-month variability,” J. Clim. 13, 1000–1016 (2000).

    Google Scholar 

  47. D. W. Thompson and J. M. Wallace, “The Arctic oscillation signature in wintertime geopotential height and temperature fields,” Geophys. Res. Lett. 25, 1297–1300 (1998).

    Google Scholar 

  48. V. N. Kryzhov and O. V. Gorelits, “The Arctic Oscillation and its impact on temperature and precipitation in Northern Eurasia in the 20th century,” Russ. Meteorol. Hydrol. 40 (11), 711–721 (2015).

    Google Scholar 

  49. V. N. Kryzhov, “Climate extremes of the 2019/2020 winter in Northern Eurasia: Contributions by the climate trend and interannual variability related to the Arctic oscillation,” Russ. Meteorol. Hydrol. 46 (2), 61–68 (2021).

    Google Scholar 

  50. T. Runde, M. Dameris, H. Garny, and D. Kinnison, “Classification of stratospheric extreme events according to their downward propagation to the troposphere,” Geophys. Res. Lett. 43, 6665–6672 (2016).

    Google Scholar 

  51. M. Kretschmer, J. Cohen, V. Matthias, J. Runge, and D. Coumou, “The different stratospheric influence on cold-extremes in Eurasia and North America,” npj Clim. Atmos. Sci. 1, 44 (2018).

    Google Scholar 

  52. V. Matthias and M. Kretschmer, “The influence of stratospheric wave reflection on North American cold spells,” Mon. Weather Rev. 148, 1675–1690 (2020).

    Google Scholar 

  53. K. Kodera, H. Mukougawa, and S. Itoh, “Tropospheric impact of reflected planetary waves from the stratosphere,” Geophys. Res. Lett. 35 (16) (2008). https://doi.org/10.1029/2008GL034575

  54. P. N. Vargin and B. M. Kiryushov, “Major sudden stratospheric warming in the Arctic in February 2018 and its impacts on the troposphere, mesosphere, and ozone layer,” Russ. Meteorol. Hydrol. 44 (2), 112–123 (2019).

    Google Scholar 

  55. Yu. A. Zyulyaeva and E. A. Zhadin, “Analysis of three-dimensional Eliassen–Palm fluxes in the lower stratosphere,” Russ. Meteorol. Hydrol. 34 (8), 483–490 (2009).

    Google Scholar 

  56. G. Manney, Z. Lawrence, M. Santee, N. Livesey, A. Lambert, and M. Pitts, “Polar processing in a split vortex: Arctic ozone loss in early winter 2012/2013,” Atmos. Chem. Phys. 15, 5381–5403 (2015).

    Google Scholar 

  57. P. N. Vargin and I. V. Medvedeva, “Temperature and dynamical regimes of the Northern Hemisphere extratropical atmosphere during sudden stratospheric warming in winter 2012–2013,” Izv., Atmos. Ocean. Phys. 51 (1), 12–29 (2015).

    Google Scholar 

  58. D. Nath, W. Chen, C. Zelin, A. Pogoreltsev, and K. Wei, “Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection,” Sci. Rep. 6, 24174 (2016). https://doi.org/10.1038/srep24174

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, grants nos. 19–05-00370 (P.N. Vargin and A.N. Lukyanov) and 20-55-00014 Bel_a (V.V. Guryanov).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. N. Vargin, V. V. Guryanov, A. N. Lukyanov or A. S. Vyzankin.

Additional information

Translated by N. Tretyakova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargin, P.N., Guryanov, V.V., Lukyanov, A.N. et al. Dynamic Processes of the Arctic Stratosphere in the 2020–2021 Winter. Izv. Atmos. Ocean. Phys. 57, 568–580 (2021). https://doi.org/10.1134/S0001433821060098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821060098

Keywords:

Navigation