Skip to main content
Log in

On the Development of Wave Disturbances of the Bottom Surface in Rivers and Channels

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

On the basis of an analytical model of the flow of tractional sediments which takes into account the influence of the slopes of the bottom surface and bottom normal and tangential stresses on the movement of the bottom material, an analytical solution that allows one to determine the bottom tangential and normal stresses that arise when a turbulent flow around periodic long bottom waves of small amplitude is formulated and the problem of determining the growth rate of the amplitude of the bottom wave is solved. An analytical dependence is obtained from the solution of the problem which determines the growth rate of the amplitude of the bottom waves on the current value of its amplitude. Using the example of the development of a periodic sinusoidal bottom wave of small steepness, a verification is carried out which shows a good qualitative and quantitative agreement of the solution with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. F. Kennedy, “The mechanics of dunes and antidunes in erodible bed channels,” Fluid Mech. 16 (14), 521–544 (1963).

    Article  Google Scholar 

  2. J. F. Kennedy, “The formation of sediment ripples, dune and antidunes,” Annu. Rev. Fluid Mech. 1, 147–168 (1969).

    Article  Google Scholar 

  3. F. Engelund, “Sediment ripples and dunes,” Annu. Rev. Fluid Mech. 4, 13–37 (1982).

    Article  Google Scholar 

  4. K. V. Grishanin, Stability of River Beds and Channels (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  5. O. N. Mel’nikova, Dynamics of the River Bed Flow: A Study Guide (MAKS Press, Moscow, 2006) [in Russian].

    Google Scholar 

  6. N. A. Mikhailova, Transport of Solid Particles by Turbulent Water Flows (Gidrometeoizdat, Leningrad, 1966) [in Russian].

    Google Scholar 

  7. R. Bagnold, “Motion of waves in shallow water,” Proc. R. Soc. London, Ser. A 187 (1008), 1–18 (1946).

    Article  Google Scholar 

  8. B. A. Shulyak, Physics of Waves on the Surface of Granular Media and Liquids (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  9. S. E. Coleman, J. J. Fedele, and M. H. Garcia, “Closed-conduit bed-forms initiation and development,” J. Hydraul. Eng. 129 (12), 956–965 (2003).

    Article  Google Scholar 

  10. Yu. G. Krat and I. I. Potapov, “Bottom stability in pressure channels,” Komp’yut. Issled. Model. 7, 1061–1068 (2015).

    Google Scholar 

  11. S. Tjerry, Ph.D. Thesis (Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Copenhagen, Denmark, 1995).

  12. L. N. Sanne, Ph.D. Thesis (Coastal and River Engineering Section, Technical University of Copenhagen, Denmark (2003).

  13. A. J. Paarlberg, C. M. Dohmen-Janssen, S. J. Hulscher, and P. Termes, “Modeling river dune evolution using a parameterization of flow separation,” J. Geophys. Res. 114 (F1) F01014 (2009).

    Article  Google Scholar 

  14. A. Khosronejad and F. Sotiropoulos, “Numerical simulation of sand waves in a turbulent open channel flow,” J. Fluid Mech. 753, 150–216 (2014).

    Article  Google Scholar 

  15. Y. Liu, H. Fang, L. Huang, and G. He, “Numerical simulation of the production of three-dimensional sediment dunes,” Phys. Fluids 31 (9), 096603 (2019). https://doi.org/10.1063/1.5108741

    Article  Google Scholar 

  16. N. Zgheib and S. Balachandar, “Linear stability analysis of subaqueous bedforms using direct numerical simulations,” Theor. Comput. Fluid Dyn. 33 (2) 161–180 (2019). https://doi.org/10.1007/s00162-019-00487-x

    Article  Google Scholar 

  17. A. Fourriere, Ph. Claudin, and B. Andreotti, “Bedforms in a turbulent stream: Formation of ripples by primary linear instability and of dunes by nonlinear pattern coarsening,” J. Fluid Mech. 649, 287–328 (2010).

    Article  Google Scholar 

  18. A. G. Petrov and I. I. Potapov, “Transfer of sediments due to normal and shear bottom stresses taking into account the bottom slope,” Prikl. Mekh. Tekh. Fiz. 55 (5), 100–105 (2014).

    Google Scholar 

  19. Yu. G. Krat and I. I. Potapov, “Influence of the size of bottom sediment particles on the wavelength of bottom disturbances in pressure channels,” 57 (3), 60–64 (2016).

  20. Yu. G. Krat and I. I. Potapov, “Model of stochastic evolution of bottom waves,” Vestn. Udmurt. Univ.: Mat. Mekh. Komp’yut. Nauki, No.2, 85–91 (2013).

    Google Scholar 

  21. A. G. Petrov and I. I. Potapov, “Simulation of turbulent flow over periodic bottom surface,” Izv., Atmos. Ocean. Phys. 53 (3), 367–372 (2017).

    Article  Google Scholar 

  22. A. G. Petrov and I. I. Potapov, Selected Chapters of Bed Dynamics (LENAND, Moscow, 2019) [in Russian].

    Google Scholar 

  23. T. Sh. Mazhidov, Candidate’s Dissertation in Engineering (Tashkent, 1984).

  24. A. G. Petrov and I. I. Potapov, “On the Engelund–Fredsøe channel-stability problem,” Izv., Atmos. Ocean. Phys. 56 (4) 373–377 (2020).

    Article  Google Scholar 

Download references

Funding

This study was funded in part by the Russian Foundation for Basic Research, project no. 18-05-00530 A, and a joint project of the Russian Foundation for Basic Research and the National Natural Science Foundation of China, project no. 21-57-53019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. I. Potapov or Yu. G. Silakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapov, I.I., Silakova, Y.G. On the Development of Wave Disturbances of the Bottom Surface in Rivers and Channels. Izv. Atmos. Ocean. Phys. 57, 192–196 (2021). https://doi.org/10.1134/S0001433821020092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821020092

Keywords:

Navigation