Skip to main content
Log in

Determining the Velocity of the Upper Layer of Lake Ladoga by Means of Maximum Cross Correlation (MCC)

  • WAYS AND MEANS OF PROCESSING AND INTERPRETING SPACE-BASED INFORMATION
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The first use of Maximum Cross Correlation to calculate the surface currents of Lake Ladoga yields very promising results in the absence of direct measurements of currents. The technique is adapted for a large lake, and new procedures are proposed for selecting the most informative infrared satellite surveys for lake flow analysis. The best conditions, parameters, and limitations of using Maximum Cross Correlation for Lake Ladoga are obtained. Surface current systems are constructed for specific wind situations in the open water period. The technique, based on an analysis of successive satellite IR surveys of Lake Ladoga’s surface, allows the dynamics of the waters to be determined and can be applied to other large lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Afanasyev, Y.D., Kostianoy, A.G., Zatsepin, A.G., and Poulain, P.-M., Analysis of velocity field in the eastern Black Sea from satellite data during the Black Sea'99 experiment, J. Geophys. Res., 2002, vol. 107, no. 8, pp. 3098–4003.

    Article  Google Scholar 

  2. Aleksanin, A.I., Aleksanina, M.G., and Karnatskii, A.Yu., Automatic computation of sea surface velocities from a sequence of satellite images, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2013, vol. 10, no. 2, pp. 131–142.

    Google Scholar 

  3. Aleksanin, A.I., Aleksanina, M.G., Zagumennov, A.A., and Kachur, V.A., Improving the accuracy of calculated surface flow velocities from satellite images, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2015, no. 3, pp. 59–66.

  4. Andreev, O.A. and Vorob’eva, L.V., Wind and runoff circulation of Lake Ladoga (numerical experiments), in Modelirovanie i eksperimental’nye issledovaniya gidrologicheskih processov v ozerakh (Simulation and Experimental Investigations of Hydrological Processes in Lakes), Leningrad: Nauka, 1986, pp. 17–21.

  5. Astrakhantsev, G.P., Egorova, N.B., Oganesyan, L.A., and Rukhovets, L.A., Three-dimensional nonstationary model of Lake Ladoga, Tr. GGI, 1988, no. 321, pp. 32–40.

  6. Bondur, V.G. and Murynin, A.B., Methods for retrieval of sea wave spectra from aerospace image spectra, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 9, pp. 877–887.

    Article  Google Scholar 

  7. Bowden, K., Physical Oceanography of Coastal Waters, New York: Wiley, 1984; Moscow: Mir, 1988.

  8. Emery, W.J., Thomas, A.C., Collins, M.J., Crawford, W.R., and Mackas, D.L., An objective method for computing advective surface velocities from sequential infrared satellite images, J. Geophys. Res., 1986, vol. 91, no. 11, pp. 12865–12878.

    Article  Google Scholar 

  9. Emery, W.J., Fowler, C., Hawkins, J., and Preller, R., Satellite image inferred sea ice motion in Fram Strait, the Greenland Sea and the Barents Sea, J. Geophys. Res., 1991, vol. 96, pp. 4751–4768.

    Article  Google Scholar 

  10. Emery, W.J., Fowler, C., and Clayson, C.A., Satellite image derived Gulf Stream currents compared with numerical model results, J. Atmos. Oceanic Technol., 1992, vol. 9, pp. 286–304.

    Article  Google Scholar 

  11. Filatov, N.N., Gidrodinamika ozer (Hydrodynamics of Lakes), St. Petersburg: Nauka, 1991.

  12. Gade, M., Seppke, B., and Dreschler-Fischer, L., Mesoscale surface current fields in the Baltic Sea derived from multi-sensor satellite data, Int. J. Remote Sens., 2012, vol. 33, pp. 3122–3146. https://doi.org/10.1080/01431161.2011.628711

    Article  Google Scholar 

  13. Guzivaty, V.V. and Naumenko, M.A., Assessment of surface currents of a large lake using sequential infrared images, in Trudy V Vserossiiskoi konferentsii “Ledovye i termicheskie protsessy na vodnykh ob’’ektakh Rossii” (“Proceedings of the V All-Russian Conference “Ice and Thermal Processes on Water Objects in Russia”), Vladimir, 2016, pp. 113–119.

  14. Haralick, R.M. and Shapiro, L.G., Computer and Robot Vision, Addison-Wesley, 1992, vol. 2, pp. 316–317.

    Google Scholar 

  15. Ivanov, A.Yu., Litovchenko, K.Ts., Al’pers, V., Naumenko, M.A., and Karetnikov, S.G., Manifestations of hydrophysical processes on the surface of Lake Ladoga according to SAR data from ERS satellites, Issled. Zemli Kosmosa, 1999, no. 4, pp. 63–75.

  16. Kamachi, M., Advective surface velocities derived from sequential images for rotational flow field: Limitations and applications of maximum cross correlation method with rotational registration, J. Geophys. Res., 1989, vol. 94, no. 12, pp. 18227–18233.

    Article  Google Scholar 

  17. Kelly, K.A. and Strub, P.T., Comparison of velocity estimates from advanced very high resolution radiometer in the coastal transition zone, J. Geophys. Res., 1992, vol. 97, no. 6, pp. 9653–9668.

    Article  Google Scholar 

  18. Lavrova, O.Yu. and Mityagina, M.I., Manifestation specifics of hydrodynamic processes in satellite images of intense phytoplankton bloom areas, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 9, pp. 974–987.

    Article  Google Scholar 

  19. Leese, J.A., Novak, C.S., and Clarke, B.B., An automated technique for obtaining cloud motion from geosynchronous satellite data using cross-correlation, J. Appl. Meteorol., 1971, vol. 10, pp. 110–132.

    Article  Google Scholar 

  20. Lewis, J.P., Fast normalized cross-correlation, in Proceedings of Vision Interface, 1995, pp. 120–123.

  21. Malinina, T.I., Filatova, I.V., and Filatov, N.N., Water balance variability and simulation of Lake Ladoga currents, in Materialy shkoly–seminara: Vzaimodeistvie mezhdu vodoi i sedimentami v ozerakh i vodoemakh (Proceedings of the School–Workshop: Interaction Between Water and Sediments in Lakes and Water Areas), Leningrad: Nauka, 1984, pp. 191–197.

  22. Maslanik, J., Agnew, T., Drinkwater, M., Emery, W., Fowler, C., Kwok, R., and Liu, A., Summary of ice-motion mapping using passive microwave data, National Snow and Ice Data Center (NSIDC) Special Publication 8, Report prepared for NSIDC at the request of the NSIDC Polar Data Advisory Group, 1998. NASA Ocean Color. https://oceancolor.gsfc.nasa.gov.

  23. Naumenko, M.A., Some aspects of the thermal regime of large lakes: Lake Ladoga and Lake Onega, Water Pollut. Res. J. Can., 1994, vol. 29, nos. 2–3, pp. 423–439.

    Article  Google Scholar 

  24. Naumenko, M.A. and Karetnikov, S.G., Seasonal evolution of the spatial distribution of water surface temperature in Lake Ladoga related to its morphometry, Dokl. Earth Sci., 2002, vol. 386, no. 7, pp. 818–820.

    Google Scholar 

  25. Notarstefano, G., Poulain, P.-M., and Mauri, E., Estimation of surface currents in the Adriatic sea from sequential infrared satellite images, J. Atmos. Oceanic Technol., 2008, vol. 25, no. 2, pp. 271–285.

    Article  Google Scholar 

  26. Okhlopkova, A.N., Currents of Lake Ladoga, Tr. Lab. Ozeroved., Leningr. Gos. Univ., 1966, vol. 20, pp. 265–278.

    Google Scholar 

  27. Rumyantsev, V.A., Izmailova, A.V., Drabkova, V.G., and Kondrat’ev, S.A., The current status and problems of the lake fund of European Russia, Herald Russ. Acad. Sci., 2018, vol. 88, no. 6, pp. 230–240. https://doi.org/10.1134/S1019331618030140

    Article  Google Scholar 

  28. SeaDAS—SeaWiFS Data Analysis System, http://seadas. gsfc.nasa.gov/seadas.

  29. Steissberg, T.E., Simon, J.H., and Geoffrey, S.S., Measuring surface currents in lakes with high spatial resolution thermal infrared imagery, Geophys. Res. Lett., 2005, vol. 32, L11402.

    Article  Google Scholar 

  30. Tokmakian, R., Strub, P., and McClean-Padman, J., Evaluation of the maximum cross-correlation method of estimating sea surface velocities from sequential satellite images, J. Atmos. Oceanic Technol., 1990, vol. 7, pp. 852–865.

    Article  Google Scholar 

  31. Wahl, D.D. and Simpson, J.J., Physical processes affecting the objective determination of near-surface velocity from satellite data, Oceanography, 1990, vol. 95, pp. 13511–13619.

    Google Scholar 

  32. Zavialov, P.O., Grigorieva, J.V., Moeller Jr., O., Kostianoy, A.G., and Gregoire, M., Continuity preserving modified maximum cross-correlation technique, J. Geophys. Res., 2002, vol. 107, no. 10, pp. 3160–3178.

    Article  Google Scholar 

Download references

Funding

This work was performed as part of a State Task for the Russian Academy of Sciences’ Institute of Limnology, topic no. 0154-2019-0001 (“Comprehensive Assessment of the Dynamics of Ecosystems of Lake Ladoga and the Waters of Its Basin under the Influence of Natural and Anthropogenic Factors”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Guzivaty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzivaty, V.V., Naumenko, M.A. & Rumyantsev, V.A. Determining the Velocity of the Upper Layer of Lake Ladoga by Means of Maximum Cross Correlation (MCC). Izv. Atmos. Ocean. Phys. 56, 1678–1686 (2020). https://doi.org/10.1134/S0001433820120415

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820120415

Keywords:

Navigation