Skip to main content
Log in

Retrieving Sea Wave Spectra Based on High Resolution Satellite Imagery under Different Conditions of Wave Generation

  • PHYSICAL BASES AND METHODS OF STUDYING THE EARTH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A method for retrieving sea wave spectra from space images of high spatial resolution has been developed for various conditions of wave generation based on the use of retrieving operators in the form of spatial-frequency filters, the parameters of which are adjusted to real conditions. The adequacy of the method is tested using the data of multidisciplinary experiments carried out in the coastal waters of the Black Sea and in the open waters of the Pacific Ocean near Hawaii by comparing the wave spectra in the frequency range 0.29–0.59 Hz (wavelengths 4.5–20 m) retrieved from the satellite images of the QuickBird and Resurs-P satellites with the spectra measured using wave buoys. The value of the retrieving parameter of the spatial-frequency filter for the section of the power-law decay of the wave frequency spectrum is updated based on the results of the studies. This value is estimated as –0.05 applied to complex wave formation conditions (long fetch, wave system of wind waves and various swell waves), which differs from the previously estimated values of –0.43 in the conditions of limited fetch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bondur, V.G., Complex satellite monitoring of coastal water areas, in Proc. 31st Int. Symp. on Remote Sensing of the Environment, ISRSE-2005 (St. Petersburg, 2005).

  2. Bondur, V.G., Satellite monitoring and mathematical modelling of deep runoff turbulent jets in coastal water areas, in Waste Water—Evaluation and Management (Rijeka: InTech, 2011), pp. 155–180. http://www.intechopen. com/articles/show/title/satellite-monitoring-and-mathematical-modelling-of-deep-runoff-turbulent-jets-incoastal- water-areas

  3. Bondur, V.G. and Tsidilina, M., Features of formation of remote sensing and sea truth databases for the monitoring of anthropogenic impact on ecosystems of coastal water areas, in Proc. 31st Int. Symp. on Remote Sensing of the Environment ISRSE-2005 (St. Petersburg, 2005), pp. 192–195.

  4. Bondur, V.G. and Sharkov, E.A., Statistical characteristics of foam formations on a disturbed sea-surface, Okeanologiya, 1982, vol. 22, no. 3, pp. 372–379.

    Google Scholar 

  5. Bondur, V.G. and Murynin, A.B., Reconstruction of the spectra of surface waves from the spectra of their images taking into account the nonlinear modulation of the brightness field, Opt. Atmos. Okeana, 1991, vol. 4, no. 4, pp. 387–393.

    Google Scholar 

  6. Bondur, V.G., Phase-spectral method’s modeling of two-dimension stochastic brightness field formed at the airspace apparatus entrance, Issled. Zemli Kosmosa, 2000, no. 5, pp. 28–44.

  7. Bondur, V.G., Aerospace methods in modern oceanology, in Novye idei v okeanologii, t. 1. Fizika, khimiya, biologiya (New Ideas in Oceanology, vol. 1, Physics. Chemistry. Biology), Moscow: Nauka, 2004.

  8. Bondur, V.G., Filatov, N.N., Grebenyuk, Yu.V., Dolotov, Yu.S., Zdorovennov, R.E., Petrov, M.P., and Tsidilina, M.N., Studies of hydrophysical processes during monitoring of the anthropogenic impact on coastal basins using the example of Mamala Bay of Oahu Island in Hawaii, Oceanology, 2007, vol. 47, no. 6, pp. 769–787.

    Article  Google Scholar 

  9. Bondur, V.G., Grebenjuk, Yu.V., and Sabinin, K.D., Variability of internal tides in the coastal water area of Oahu Island (Hawaii), Oceanology, 2008b, vol. 48, no. 5, pp. 611–621.

    Article  Google Scholar 

  10. Bondur, V.G., Grebenyuk, Yu.V., and Sabynin, K.D., The spectral characteristics and kinematics of short-period internal waves on the Hawaiian shelf, Izv., Atmos. Oceanic Phys., 2009, vol. 45, no. 5, pp. 598–607.

    Article  Google Scholar 

  11. Bondur, V.G., Aerospace methods and technologies for monitoring oil and gas areas and facilities, Izv., Atmos. Oceanic Phys., 2011, vol. 47, no. 9, pp. 1007–1018. https://doi.org/10.1134/S0001433811090039

    Article  Google Scholar 

  12. Bondur, V.G., Sabinin, K.D., and Grebenyuk, Yu.V., Anomalous variation of the ocean’s inertial oscillations at the Hawaii shelf, Dokl., Earth Sci., 2013a, vol. 450, pp. 526–530.

    Article  Google Scholar 

  13. Bondur, V.G., Vorobjev, V.E., Grebenjuk, Y.V., Sabinin, K.D., and Serebryany, A.N., Study of fields of currents and pollution of the coastal waters on the Gelendzhik shelf of the Black Sea with space data, Izv., Atmos. Oceanic Phys., 2013b, vol. 49, no. 9, pp. 886–896.

    Article  Google Scholar 

  14. Bondur, V.G., Dulov, V.A., Murynin, A.B., and Ignatiev, V.Yu., Retrieving sea-wave spectra using satellite-imagery spectra in a wide range of frequencies, Izv., Atmos. Oceanic Phys., 2016, vol. 52, pp. 637–648.

    Article  Google Scholar 

  15. Bondur, V.G. and Murynin, A.B., Methods for retrieval of sea wave spectra from aerospace image spectra, Izv. Atmos. Ocean. Phys., 2016a, vol. 52, no. 9, pp. 877–887. https://doi.org/10.1134/S0001433816090085

    Article  Google Scholar 

  16. Bondur, V.G., Dulov, V.A., Murynin, A.B., and Yurovsky, Yu.Yu., A study of sea-wave spectra in a wide wavelength range from satellite and in-situ data, Izv., Atmos. Oceanic Phys., 2016b, vol. 52, pp. 888–903.

    Article  Google Scholar 

  17. Chelton, D.B., et al., On the use of Quikscat scattometer measurements of surface wind for marine weather prediction, J. Am. Meteorol. Soc., 2006, vol. 134, pp. 2055–2071.

    Google Scholar 

  18. Collard, F., Ardhuim, F., and Chapron, B., Routine monitoring and analysis of ocean swell fields using a spaceborne SAR, Geophys. Res. Lett., 2009, vol. 36. https://doi.org/10.1029/2008GL037030

  19. Davidan, I.N., Lopatukhin, L.I., and Rozhkov, V.A., Vetrovoe volnenie v Mirovom Okeane (Wind Waves in the World Ocean), Leningrad: Gidrometeoizdat, 1985.

  20. Keeler, R., Bondur, V., and Vithanage, D., Sea truth measurements for remote sensing of littoral water, Sea Technol., April 2004, pp. 53–58.

  21. Khalfin, I.Sh., Vozdeistvie voln na morskie neftegazopromyslovye sooruzheniya (Wave Impacts on Marine Oil and Gas Exploration Facilities), Moscow: Nedra, 1990.

  22. Krylov, Yu.M., Strekalov, S.S., and Tsyplukhin, V.F., Vetrovye volny i ikh vozdejstvie na sooruzheniya (Wind Waves and Their Impact on Constructions). Leningrad: Gidrometeoizdat, 1985.

  23. Lukyanova, S.A. and Soloveva, G.D., Abrasion of marine coast of Russia, Vestn. Mosk. Univ., Ser. 5: Geogr., 2009, no, 4, pp. 40–44

  24. Monin, A.S. and Krasitskij, V.P., Yavleniya na poverkhnosti okeana (Phenomena on the Ocean Surface), Leningrad: Gidrometeoizdat, 1985.

  25. Murynin, A.B., Retrieving spatial spectra of the sea surface from optical images in a nonlinear brightness field model, Issled. Zemli Kosmosa, 1990, no. 6, pp. 60–70.

  26. Murynin, A.B., Parameterization of filters retrieving the spatial spectra of sea surface slopes on the basis of optical imagery, Issled. Zemli Kosmosa, 1991, no. 5, pp. 31–38.

  27. Phillips, O.M., The Dynamics of the Upper Ocean, Cambridge: Cambridge Univ. Press, 1977; Moscow: Mir, 1980.

  28. Polnikov, V.G., The role of evolution mechanisms in the formation of a wind-wave equilibrium spectrum, Izv., Atmos. Oceanic Phys., 2018, vol. 54, no. 4, pp. 394–403.

    Article  Google Scholar 

  29. Rezhim, diagnoz i prognoz vetrovogo volneniya v moryakh i okeanakh (Mode, Diagnosis, and Forecast of Wind Waves in Seas and Oceans), Nesterov, E.S., Ed., Moscow: Rosgidromet, 2013.

    Google Scholar 

  30. Toba, J., Local balance in the air–sea boundary process, J. Oceanogr. Soc. Jpn., 1973, vol. 29, pp. 209–225.

    Article  Google Scholar 

  31. Trubkin, I.P., Vetrovoe volnenie. Vzaimodejstvie i raschet veroyatnostnykh kharakteristik (Wind Waves. Interaction and Calculation of Probability Characteristics), Moscow: Nauchnyi mir, 2007.

  32. Veter, volny i morskie porty (Wind, Waves and Sea Ports), Krylov, Yu.M., Ed., Leningrad: Gidrometeoizdat, 1986.

    Google Scholar 

  33. Vorobyev, V.E., Murynin, A.B., and Khachatryan, K.S., High performance registration of sea wave spatial spectra during online satellite monitoring of extensive water areas, Issled. Zemli Kosmosa, 2020 (in press).

  34. Yurovskaya, M.V., Dulov, V.A., Chapron, B., and Kudryavtsev, V.N., Directional short wind wave spectra derived from the sea surface photography, J. Geophys. Res., 2013, vol. 118, no. 9, pp. 4380–4394. https://doi.org/10.1002/jgrc.20296

    Article  Google Scholar 

Download references

Funding

The research was carried out with support from the Ministry of Science and Higher Education of the Russian Federation (unique project identifier RFMEFI60719X0312).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. G. Bondur, V. E. Vorobyev or A. B. Murynin.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondur, V.G., Vorobyev, V.E. & Murynin, A.B. Retrieving Sea Wave Spectra Based on High Resolution Satellite Imagery under Different Conditions of Wave Generation. Izv. Atmos. Ocean. Phys. 56, 887–897 (2020). https://doi.org/10.1134/S0001433820090042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820090042

Keywords:

Navigation