Skip to main content
Log in

On the Engelund–Fredsøe Channel-Stability Problem

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

To settle the Engelund–Fredsøe channel-stability problem, a condition is defined in this paper which makes it possible to determine the value of the phase shift between the flow rate of the sediment load and the maximum of the bottom tangential stresses arising in a turbulent hydrodynamic flow when it flows around gentle shallow periodic waves of low steepness. The dependence of the phase shift for bottom waves of small steepness on the geometric and physicomechanical parameters of the problem is analyzed. For the distribution of shear stresses on the bottom surface, a regularity is established that relates the length of bottom waves to the depth of flow. This pattern generalizes a number of previously obtained phenomenological models and is consistent with known experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. G. Fromant, D. Hurther, J. van der Zanden, D. A. van der A, I. Cáceres, T. O’Donoghue, and J. S. Ribberink, “Wave boundary layer hydrodynamics and sheet flow properties under large-scale plunging-type breaking waves,” J. Geophys. Res.: Oceans 124, 75–98 (2018).

    Article  Google Scholar 

  2. M. Vah, A. Jarno, S. Le Bot, Y. Ferret, and F. Marin, “Bedload transport and bedforms migration under sand supply limitation,” Environ. Fluid Mech. (2020). https://doi.org/10.1007/s10652-020-09738-6

  3. R. S. Mieras, J. A. Puleo, D. Anderson, T. -J. Hsu, D. T. Cox, and J. Calantoni, “Relative contributions of bed load and suspended load to sediment transport under skewed asymmetric waves on a sandbar crest,” J. Geophys. Res.: Oceans 124, 1294–1321 (2019).

    Article  Google Scholar 

  4. C. Di Cristo, M. Iervolino, and A. Vacca, “Linear stability analysis of a 1-D model with dynamical description of bed load transport,” J. Hydraul. Res. 44, 480–487 (2006).

    Article  Google Scholar 

  5. J. F. Kennedy, “The mechanics of dunes and antidunes in erodible–bed channels,” J. Fluid Mech. 16 (4), 521–544 (1963).

    Article  Google Scholar 

  6. K. V. Grishanin, Stability of River Beds and Channels (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  7. A. G. Petrov and I. I. Potapov, Selected Chapters on Channel Dynamics (Lenand, Moscow, 2019) [in Russian].

    Google Scholar 

  8. M. A. Velikanov, Dynamics of Channel Flows (Gidrometeoizdat, Leningrad, 1949) [in Russian].

    Google Scholar 

  9. N. A. Mikhailova, “Mechanism of formation and movement of sand waves,” Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 1, 53–58 (1952).

  10. K. I. Rossinskii and V. K. Debol’skii, River Alluvia (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  11. B. A. Shulyak, Physics of Waves on the Surface of a Loose Bed or a Liquid (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  12. N. T. Povalo-Shveikovskii, Statistical Methods in the Turbulence Theory: A Monograph (Akad. Nauk SSSR, Moscow, 1938) [in Russian].

    Google Scholar 

  13. K. V. Grishanin, Channel Flow Dynamics (Gidrometeoizdat, Leningrad, 1979).

    Google Scholar 

  14. B. F. Snishchenko, “Relation between the height of sand waves and the parameters of the river flow and bed,” Meteorol. Gidrol., No. 6, 84–90 (1980).

  15. D. Koller, R. Manica, A. Borges, and J. Fedele, “Experimental bedforms by saline density currents,” Braz. J. Geol. 42 (2), 1–10 (2019).

    Google Scholar 

  16. Y. Kim, R. S. Mieras, Z. Cheng, D. Anderson, T.-J. Hsu, J. A. Puleo, and D. Cox, “A numerical study of sheet flow driven by velocity and acceleration skewed near-breaking waves on a sandbar using SedWaveFoam,” Coastal Eng. 152, 1–18 (2019).

    Article  Google Scholar 

  17. T. B. Benjamin, “Shearing flow over a wavy boundary,” J. Fluid Mech., No. 6, 161–205 (1959).

  18. F. Engelund and J. Fredsøe, “Sediment ripples and dunes,” Annu. Rev. Fluid Mech 14, 13–37 (1982).

    Article  Google Scholar 

  19. A. G. Petrov and I. I. Potapov, “Simulation of turbulent flow over periodic bottom surface,” Izv. Atmos. Oceanic Phys. 53, 367–372 (2017).

    Article  Google Scholar 

  20. J. Buckles, T. J. Hanratty, and R. J. Adrian, “Turbulent flow over large–amplitude wavy surfaces,” J. Fluid Mech. 140, 27–44 (1984).

    Article  Google Scholar 

  21. B. F. Snishchenko, “On the calculation of sand hill length in open flows,” Meteorol. Gidrol., No. 2, 89–96 (1980).

  22. A. B. Klaven and Z. D. Kopaliani, “On the relation between ridge length and the longitudinal size of large-scale turbulence elements,” Tr. Gos. Gidrol. Inst. No. 219, 19–24 (1974).

    Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 18-05-00530 А) and performed as part of State Task no. AAAA-A20-120011690138-6.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Petrov or I. I. Potapov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, A.G., Potapov, I.I. On the Engelund–Fredsøe Channel-Stability Problem. Izv. Atmos. Ocean. Phys. 56, 373–377 (2020). https://doi.org/10.1134/S0001433820040088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820040088

Keywords:

Navigation