Skip to main content
Log in

Estimation of Elastic Stress-Related Properties of Bottom Sediments via the Inversion of Very- and Ultra-High-Resolution Seismic Data

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This paper provides an overview of several seismic inversion approaches and their application to very- and ultra-high-resolution marine seismic datasets. The importance of seismic inversion is related to the current demands of the offshore engineering industry for estimates of elastic stress-related parameters of near-surface and bottom sediments. To meet these demands, the seismic inversion methods which facilitate the estimation of elastic properties of the subsurface should be developed for very high-resolution data. Several problems prevent the successful application of seismic inversion to high-resolution datasets. Firstly, borehole measurements, which are routinely applied to constrain seismic inversion, are often not available for the offshore near-surface. Secondly, very- and ultra-high-resolution seismic data are acquired in high frequency ranges, and low-frequency information is absent in such datasets. The elaboration of seismic inversion methods for ultra-high-resolution data is important for both practical and scientific purposes. In the paper, we share our experience in applying acoustic poststack inversion and prestack AVA inversion to very- and ultra-high-resolution marine seismic datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Akopova, S.S., Biryukov, E.A., Grigor’ev, A.G., Tihotskii, S.A., and Shur., D.Yu, An experimental study of the possibility of using the Scholte surface wave for structure studies of the upper part of the profile in water bodies, Vopr. Inzh. Seismol., 2016, vol. 43, no. 4, pp. 77–86. https://doi.org/10.21455/vis2016.4-5

    Article  Google Scholar 

  2. Ampilov, Yu.P., Barkov, A.Yu., and Yakovlev, I.V., The role of seismic inversion in geological modeling of the marine gas deposits, Gazov. Prom-st., 2011, pp. 69–74.

    Google Scholar 

  3. Ampilov, Yu.P., Vladov, M.L., and Tokarev, M.Yu., Broadband marine seismic acquisition technologies: challenges and opportunities, Seism. Instrum., 2019a, vol. 55, no. 4, pp. 388–403. https://doi.org/10.3103/S0747923919040030

    Article  Google Scholar 

  4. Ampilov, Yu.P., Terekhina Ya.E., and Tokarev, M.Yu., Applied aspects of different frequency bands of seismic and water acoustic investigations on the shelf, Izv., Atm-os. Ocean. Phys., 2019b, vol. 55, no. 7.

  5. Bronston, M.A. and Graul, J.M., The determination of shallow marine sediment lithology using high-resolution multi-offset seismic data, Offshore Technology Conf.: Proc., 1994. https://doi.org/10.4043/7373-MS

  6. Diaferia, G., Kruiver, P.P., and Drijkoningen, G.G., Optimizing acquisition parameters for MASW in shallow water, 75th EAGE conf. & exhibition incorporating SPE EUROPEC2013(London, UK, 10–13 June 2013). https://doi.org/10.3997/2214-4609.20130637

  7. Dinn, G., Field experience with a new sub-bottom investigation tool: Acoustic 3-D imaging of the subseabed, Proc. of Îceans 2012 Conf. (Hampton Roads, VA, 14–19 October,2012). https://doi.org/10.1109/OCEANS.2012.6405076

  8. Goldberg, D.E., Genetic Algorithms in Search Optimization and Machine Learning, Reading, MA: Addison-Wesley, 1989. ISBN 9780201157673

    Google Scholar 

  9. Kolyubakin, A.A., Mironyuk, S.G., Roslyakov, A.G., Rybalko, A.E., Terekhina, Ya.E., and Tokarev, M.Yu., Use of a complex of geophysical methods for the detection of hazardous geological processes and phenomena at the Laptev Sea shelf, Inzh. Izyskaniya, 2016, no. 10–11, pp. 38–52.

  10. Kolyubakin, A.A., Roslyakov, A.G., Mironyuk, S.G., Pirogova, A.S., Tokarev, M.Yu., and Ksenofontova, M.A., Analysis of major geological hazards during the preparation for exploration and prospection work at the Laptev Sea shelf, Inzh.Izyskaniya, 2017, vol. 10, pp. 36–52.

    Google Scholar 

  11. Kugler, S., Bohlen, T., Bussat, S., and Klein, G.H., Variability of Scholte-wave dispersion in shallow-water marine sediments, J. Environ. Eng. Geophys., 2006, vol. 10, pp. 203–218. https://doi.org/10.2113/JEEG10.2.203

    Article  Google Scholar 

  12. Marsset, T., Marsset, B., Thomas, Y., Cattaneo, A., Thereau, E., Trincardi, F., and Cochonat, P., Analysis of Holocene sedimentary features on the Adriatic shelf from 3D very high resolution seismic data (Triad survey), Mar. Geol., 2004, vol. 213, pp. 73–89.

    Article  Google Scholar 

  13. Morgan, E.C., Vanneste, M., Lecomte, I., Baise, L.G., Longva, O., and McAdoo, B., Estimation of free gas saturation from seismic reflection surveys by the genetic algorithm inversion of a P-wave attenuation model, Geophysics, 2012, vol. 77, no. 4, pp. R175–R187. https://doi.org/10.1190/geo2011-0291.1

    Article  Google Scholar 

  14. Mehta, K., Snieder, R., Calvert, R., and Sheiman, J., Virtual source gathers and attenuation of free-surface multiples using obc data: Implementation issues and a case study, SEG Technical program expanded abstr., 2006, vol. 25, pp. 2669–2673.

  15. Müller, C., Woelz, S., Ersoy, Y., et al., Ultra-high-resolution marine 2D–3D seismic investigation of the Liman Tepe, J. Appl. Geophys., 2009, vol. 68, pp. 124–134.

    Article  Google Scholar 

  16. Oldenburg, D.W., Scheuer, T., and Levy, S., Recovery of the acoustic impedance from reflection seismograms, Geophysics, 1983, vol. 48, pp. 1318–1337.

    Article  Google Scholar 

  17. Pirogova, A., Tokarev, M., Isaenkov, R., Terekhina, Y., and Kolyubakin, A., Simultaneous two-level seismic observations in ultra-high-, very-high- and high-frequency regimes for quantitative evaluation of near-surface geohazards, Expanded Abstr. 4th Intern. Conf. Engineering Geophysics (ICEG). SEG, 2017.

  18. Provenzano, G., Vardy, M.E., and Henstock, T.J., ppre-stack waveform inversion of VHF marine seismic reflection data—a case study in Norway, Near Surface Geoscience – 2nd Appl. Shallow Marine Geophys. Conf., 2016. https://doi.org/10.3997/2214-4609.201602147

  19. Riedel, M. and Theilen, F., AVO investigations of shallow marine sediments, Geophys, Prospect., 2001, vol. 49, pp. 198–212.

    Article  Google Scholar 

  20. Sen, M.K. and Stoffa, P.L., Global Optimization Methods in Geophysical Inversion, Cambridge: Camb. Univ. Press, 2013. https://doi.org/10.1017/CBO9780511997570

    Book  Google Scholar 

  21. Shmatkov, A.A. and Tokarev, M.Yu., A new 3D ultrahigh resolution seismic technique for shallow water studies, Ekspozitsiya. Neft’. Gaz, 2014, no. 6, pp. 39–42.

  22. Shmatkova, A.A., Shmatkov, A.A., Gainanov, V.G., and Buenz, S., Identification of geohazards based on the data of marine high-resolution 3D seismic observations in the Norwegian Sea, Moscow Univ. Geol. Bull., 2015, vol. 70, no. 1, pp. 53–61.

    Article  Google Scholar 

  23. Thomas, Y., Marsset, B., Westbrook, G.K., Grall, C., Geli, L., Cifci, G., Rochat, A., and Saritas, H., Contribution of high-resolution 3D seismic near-seafloor imaging to reservoir-scale studies: Application to the active North Anatolian Fault, Sea of Marmara, Near Surface Geophys., 2012, vol. 11, no 10, pp. 291–301. https://doi.org/10.3997/1873-0604.2012019

    Article  Google Scholar 

  24. Tokarev, M.Yu. and Pirogova, A.S., Estimation of elastic properties of gas-bearing near-surface sediments by ultra-high-resolution deep-towed seismoacoustic profiling. Kandalaksha Gulf, White Sea, Seism. Surv. Technol., 2015, no. 3, pp. 66–74.

  25. Tokarev, M., Kuzub, N., Pevzner, R., Kalmykov, D., and Bouriak, S., High resolution 2D deep-towed seismic system for shallow water investigation, First Break, 2008, vol. 26, no. 4, pp. 77–85.

    Google Scholar 

  26. Tokarev, M.Yu., Poludetkina E.N., Starovoitov, A.V., Pirogova, A.S., Korost, S.R., Oshkin, A.N., and Potemka, A.K., The characteristics of gas-saturated deposits of the Kandalaksha Bay, the White Sea, according to seismoacoustic and lithogeochemical studies, Moscow Univ. Geol. Bull., 2019, vol. 74, pp. 221–228. https://doi.org/10.3103/S0145875219020108

    Article  Google Scholar 

  27. Tóth, Z., Spiess, V., Mogollón, J.M., and Jensen, J.B., Estimating the free gas content in Baltic Sea sediments using compressional wave velocity from marine seismic data, J. Geophys. Res.: Solid Earth, 2014, vol. 119, pp. 8577–8593. https://doi.org/10.1002/2014JB010989

    Article  Google Scholar 

  28. Vardy, M.E., Deriving shallow-water sediment properties using post-stack acoustic impedance inversion, Near Surface Geophys., 2014, vol. 13, no. 2, pp. 143–154. https://doi.org/10.3997/1873-0604.2014045

    Article  Google Scholar 

  29. Vardy, M.E., Dix, J.K., Henstock, T.J., et al., Decimeter-resolution 3D seismic volume in shallow water: A case study in small-object detection, Geophysics, 2008, vol. 73, no. 2, pp. 33–40.

    Article  Google Scholar 

  30. Vardy, M.E., Remote characterization of shallow marine sediments—current status and future questions, Near Surface Geoscience – 2nd Appl. Shallow Marine Geophys. Conf., 2016. https://doi.org/10.3997/2214-4609. 201602145

  31. Virieux, J. and Operto, S., An overview of full-waveform inversion in exploration geophysics, Geophysics, 2009, vol. 74, pp. WCC1–WCC26. https://doi.org/10.1190/1.3238367

    Article  Google Scholar 

  32. Yakovlev, I., Stein, Y., Barkov, A., Filippova, K., and Fedotov, S., 3D geological model for a gas-saturated reservoir based on simultaneous deterministic partial stack inversion, First Break, 2010, vol. 28, no. 6, pp. 125–133.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the CGG company for the opportunity to use the seismic inversion software.

Funding

This work was supported by the Competitiveness Enhancement Program of the Moscow Institute of Physics and Technology (Research University) (in accordance with the state program to enhance the competitiveness of leading universities of the Russian Federation among the world’s leading research and educational centers) (Program no. 5-100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Pirogova.

Ethics declarations

We declare no conflict of interests.

Additional information

Translated by E. Maslennikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirogova, A.S., Tikhotskii, S.A., Tokarev, M.Y. et al. Estimation of Elastic Stress-Related Properties of Bottom Sediments via the Inversion of Very- and Ultra-High-Resolution Seismic Data. Izv. Atmos. Ocean. Phys. 55, 1755–1765 (2019). https://doi.org/10.1134/S0001433819110124

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819110124

Keywords:

Navigation