Skip to main content
Log in

Relationship between the Brightness Temperature Anomalies of the Lower Troposphere and the Climate Indices in the Southern Urals

  • PHYSICAL FOUNDATION OF EARTH OBSERVATION AND REMOTE SENSING
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The average monthly temperature of the lower troposphere (TLT) retrieved from satellite sensing data for 1979–2017 in the Southern Urals is analyzed. The method of decomposition of the temperature series into empirical orthogonal components (EOCs) was used to study the spatiotemporal TLT structure. Correlation analysis of the identified EOCs for winter and summer seasons and the indices of large-scale modes of natural climatic variability in the Northern Hemisphere is carried out. The first leading EOC, which characterizes a negative temperature trend, produces the main contribution to the overall variability. In winter, the leading mode is associated with the North Atlantic oscillation. In summer, a significant contribution of the Atlantic multidecadal oscillation and the index of the Arctic sea ice concentration anomalies was revealed. This may be used to improve the reliability of forecasting the regional climate change in the coming decades. The results suggest that the natural climatic variability has a considerable effect on the temperature regime and that it might be difficult to isolate the anthropogenic component of climate change in the studied region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bagrov, N.A., Analytical representation of meteorological field series by natural orthogonal components, Tr. TSIP, 1959, no. 74, pp. 3–24.

  2. Bardin, M.Yu. and Polonsky, A.B., North Atlantic Oscillation and synoptic variability in the European–Atlantic region in winter, Izv., Atmos. Ocean. Phys., 2005, vol. 41, no. 2, pp. 127–136.

    Google Scholar 

  3. Barnston, A.G. and Livezey, R.E., Classification, seasonality, and persistence of low frequency atmospheric circulation patterns, Mon. Weather Rev., 1987, vol. 115, pp. 1083–1126.

    Article  Google Scholar 

  4. Brovelli, M.A., Sanso, F., and Venuti, G., A discussion on the Wiener–Kolmogorov prediction principle with easy-to-compute and robust variants, J. Geod., 2003, vol. 76, nos. 11–12, pp. 673–683.

    Article  Google Scholar 

  5. Chered’ko, N.N., Tartakovsky, V.A., Krutikov, V.A., and Volkov, Yu.V., Northern Hemisphere climate classification from estimate of the temperature signal phase, Opt. Atmos. Okeana, 2016, vol. 29, no. 8, pp. 625–632.

    Google Scholar 

  6. Craddock, J.M., A meteorological application of the principal component analysis, The Statistician, 1966, vol. 15, pp. 143–156.

    Article  Google Scholar 

  7. Craddock, J.M., Problems and prospects for eigenvector analysis in meteorology, The Statistician, 1973, vol. 22, no. 2, pp. 133–145.

    Article  Google Scholar 

  8. Darman, Z.I., On the calculation of the average precipitation layer in river basins, Meteorol. Gidrol., 1949, no. 4, pp. 118–121.

  9. Demchenko, P.F. and Kislov, A.V., Stokhasticheskaya dinamika prirodnykh ob"yektov. Brounovskoe dvizhenie i geofizicheskie prilozheniya (Stochastic Dynamics of Natural Objects. Brownian Motion and Geophysical Applications), Moscow: GEOS, 2010.

  10. Dewitte, B., Illig, S., Renault, L., Goubanova, K., Takahashi, K., Gushchina, D., Mosquera, K., and Purca, S., Modes of covariability between sea surface temperature and wind stress intraseasonal anomalies along the coast of Peru from satellite observations (2000–2008), J. Geophys. Res., 2011, vol. 116, C04028. https://doi.org/10.1029/2010JC006495

    Article  Google Scholar 

  11. Friederichs, P. and Hense, A., Statistical inference in canonical correlation analyses exemplified by influence of North Atlantic SST on European climate, J. Clim., 2003, vol. 16, no. 3, pp. 522–534.

    Article  Google Scholar 

  12. Fyfe, J.C., Gillett, N.P., and Zweirs, F.W., Overestimated global warming over the past 20 years, Nature, 2013, vol. 6, pp. 767–769.

    Google Scholar 

  13. Gevorkyan, P.S., Potemkin, A.V., and Eisymont, I.M., Teoriya veroyatnostei i matematicheskaya statistika (Theory of Probability and Mathematical Statistics), Moscow: Fizmatlit, 2016.

  14. Ghil, M. and Vautard, R., Interdecadal oscillations and the warming trend in global temperature time series, Nature, 1991, vol. 350, pp. 324–327.

    Article  Google Scholar 

  15. Gushchina, D., Yu., Petrosyants, M.A., and Semenov, E.K., Empirical model of the tropical atmosphere circulation during the El Niño–Southern Oscillation phenomenon, Meteorol. Gidrol., 1997, no. 1, pp. 15–26.

  16. Hirsch, A.L., Wilhelm, M., Davin, E.L., Thiery, W., and Seneviratne, S.I., Can climate-effective land management reduce regional warming?, J. Geophys. Res., 2017, vol. 122, pp. 2269–2288. https://doi.org/10.1002/2016JD026125

    Article  Google Scholar 

  17. Hurrell, J.W., Kushnir, Y., Ottersen, G., and Visbeck, M., An Overview of the North Atlantic Oscillation: Climatic Significance and Environmental Impact, Washington D.C.: Am. Geophys. Union, 2003. https://doi.org/10.1029/134GM01

    Book  Google Scholar 

  18. IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G.-K., et al., Eds., Cambridge: Cambridge Univ. Press, 2013).

  19. Kagan, R.L., Osrednenie meteorologicheskikh polei (Averaging of Meteorological Fields), Leningrad: Gidrometeoizdat, 1979.

  20. Kazakevich, D.V., Osnovy teorii sluchainykh funktsii v zadachakh gidrometeorologii (Basics of the Theory of Random Functions in Hydrometeorological Problems), Leningrad: Gidrometeoizdat, 1989.

  21. Kiselev, B.V., Studying randomness and determinism in surface temperature anomaly indices using the recurrence plot method, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 1, pp. 33–36.

    Article  Google Scholar 

  22. Klok, E.J. and Klein Tank, A.M.G., Updated and extended European dataset of daily climate observations, Int. J. Climatol., 2009, vol. 29, pp. 1182–1191.

    Article  Google Scholar 

  23. Korneva, I.A. and Semenov, S.M., Surface temperature response to variations in atmospheric albedo: Estimating the radiation effect, Russ. Meteorol. Hydrol., 2016, vol. 41, no. 5, pp. 307–311.

    Article  Google Scholar 

  24. Kurbatkin, G.P. and Smirnov, V.D., Tropospheric temperature interannual variations associated with decadal changes in the North Atlantic Oscillation, Izv., Atmos. Ocean. Phys., 2010, vol. 46, no. 4, pp. 401–413.

    Article  Google Scholar 

  25. Lader, R., Bhatt, U.S., Walsh, J.E., Rupp, T.S., and Bieniek, P.A., Two-meter temperature and precipitation from atmospheric reanalysis evaluated for Alaska, J. Appl. Meteorol. Climatol., 2016, vol. 55, no. 4, pp. 901–922. https://doi.org/10.1175/JAMC-D-15-0162.1

    Article  Google Scholar 

  26. Luo, D., Xiao, Y., Yao, Y., Dai, A., Simmonds, I., and Franzke, C.L.E., Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. Part I: Blocking-induced amplification, J. Clim., 2016a, vol. 29, pp. 3925–3947.

    Article  Google Scholar 

  27. Luo, D., Xiao, Y., Yao, Y., Dai, A., Simmonds, I., and Franzke, C.L.E., Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. Part II: The link to the North Atlantic Oscillation, J. Clim., 2016b, vol. 29, pp. 3949–3971.

    Article  Google Scholar 

  28. Mears, C.A. and Wentz, F.J., Construction of the RSS V3.2 lower-tropospheric temperature dataset from the MSU and AMSU microwave sounders, J. Atmos. Oceanic Technol., 2009, vol. 26, no. 8, pp. 1493–1509. https://doi.org/10.1175/2009JTECHA1237.1

    Article  Google Scholar 

  29. Mears, C.A. and Wentz, F.J., A satellite-derived lower-tropospheric atmospheric temperature dataset using an optimized adjustment for diurnal effects, J. Clim., 2017, vol. 30, no. 19, pp. 7695–7718. https://doi.org/10.1175/JCLI-D-16-0768.1

    Article  Google Scholar 

  30. Mokhov, I.I. and Semenov, V.A., Weather and climate anomalies in Russian regions related to global climate change, Russ. Meteorol. Hydrol., 2016, vol. 41, no. 2, pp. 84–92.

    Article  Google Scholar 

  31. Nesterov, E.S., On the influence of the North Atlantic and East Atlantic oscillations on the formation of dangerous waves in the North Atlantic, Tr. Gidromettsentra Rossii, 2016, no. 362, pp. 83–91.

  32. North, G.R., Bell, T.L., Cahalan, R.F., and Moeng, F.J., Sampling errors in the estimation of empirical orthogonal functions, Mon. Weather Rev., 1982, vol. 110, no. 7, pp. 699–706.

    Article  Google Scholar 

  33. Obukhov, A.M., On statistically orthogonal expansions of empirical functions, Izv. Akad. Nauk SSSR, Ser. Geofiz., 1960, no. 3, pp. 432–439.

  34. Popova, V.V. and Shmakin, A.B., Regional structure of surface-air temperature fluctuations in Northern Eurasia in the latter half of the 20th and early 21st centuries, Izv., Atm-os. Ocean. Phys., 2010, vol. 46, no. 2, pp. 144–158.

    Article  Google Scholar 

  35. Semenov, V.A., Structure of temperature variability in the high latitudes of the Northern Hemisphere, Izv., Atmos. Ocean. Phys., 2007, vol. 43, no. 6, pp. 687–695.

    Article  Google Scholar 

  36. Semenov, V.A., Link between anomalously cold winters in Russia and sea-ice decline in the Barents Sea, 2016, vol. 52, no. 3, pp. 225–233.

  37. Semenov, V.A., Shelekhova, E.A., Mokhov, I.I., Zuev, V.V., and Koltermann, K.P., Influence of the Atlantic multidecadal oscillation on settling anomalous climate regimes in Northern Eurasia based on model simulation, Dokl. Earth Sci., 2014, vol. 459, no. 2, pp. 1619–1622.

    Article  Google Scholar 

  38. Sonechkin, D.M., On the determination of natural components of meteorological fields, Meteorol. Gidrol., 1971, no. 3, pp. 22–29.

  39. Sterin, A.M. and Timofeev, A.A., Estimation of surface air temperature trends over the Russian Federation territory using the quantile regression method, Russ. Meteorol. Hydrol., 2016, vol. 41, no. 6, pp. 388–397.

    Article  Google Scholar 

  40. Suryanarayana, T.M.V. and Mistry, P.B., Principal Component Regression for Crop Yield Estimation, Singapore: Springer, 2016.

    Book  Google Scholar 

  41. Turuncoglu, U.U. and Sannino, G., Validation of newly designed regional earth system model (RegESM) for Mediterranean basin, Clim. Dyn., 2017, pp. 2919–2947. https://doi.org/10.1007/s00382-016-3241-1

  42. Vasil’ev, D.Yu., Lukmanov, R.L., Ferapontov, Yu.I., and Chuvyrov, A.N., Periodicity in the hydrometeorological parameters of Bashkiria, Dokl. Earth Sci., 2013, vol. 448, no. 1, pp. 131–134.

    Article  Google Scholar 

  43. Vasil’ev, D.Yu. and Ferapontov, Yu.I., Trends in the fluctuations in surface air temperature on the example of Bashkiria, Izv. Ross. Akad. Nauk, Ser. Geogr., 2015, no. 1, pp. 77–86.

  44. Vasil’ev, D.Yu., Kucherov, S.E., and Lazarev, V.V., Interrelation between solar activity, climatic indices, and precipitations of May–July, reconstructed from analysis of the radial growth of larch in the Southern Urals, Opt. Atmos. Okeana, 2016, vol. 29, no. 3, pp. 224–231.

    Google Scholar 

  45. Vasil’ev, D.Yu., Sivohip, J.T., and Chibilov, A.A., Climate dynamics and interdecadal discharge fluctuations in the Ural River basin, Dokl. Earth Sci., 2016, vol. 469, no. 1, pp. 710–715.

    Article  Google Scholar 

  46. Vasil’ev, D.Yu., Babkov, O.K., Kochetkova, Ye.S., and Semenov, V.A., Wavelet and cross-wavelet analysis of precipitation amounts and surface temperature on the European territory of Russia, Izv. Ross. Akad. Nauk, Ser. Geogr., 2017, no. 6, pp. 63–77.

  47. Vasil’ev, D.Yu., Babkov, O.K., Davliev, I.R., Semenov, V.A., and Khristodulo, O.I., The spatial and temporal structure of surface temperature fluctuations in the Southern Urals, Opt. Atmos. Okeana, 2018a, vol. 31, no. 4, pp. 294–302.

    Google Scholar 

  48. Vasil’ev, D.Yu., Pavleichik, V.M., Semenov, V.A., Sivokhip, Zh.T., and Chibilev, A.A., The long-term pattern of temperature and precipitation in the Southern Urals, Dokl. Earth Sci., 2018b, vol. 478, no. 5, pp. 245–249.

    Article  Google Scholar 

  49. Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii. Obshcheye rezyume (The Second Assessment Report of Roshydromet on Climate Changes and Their Consequences on the Territory of the Russian Federation. General Summary), Moscow: Rosgidromet, 2014.

  50. Wallace, J.M. and Gutzler, D.S., Teleconnections in the geopotential height field during the northern hemisphere winter, Mon. Weather Rev., 1981, vol. 109, pp. 784–812.

    Article  Google Scholar 

  51. Zhou, C. and Wang, K., Land surface temperature over global desert: means, variability, and trends, J. Geophys. Res., 2016, pp. 344–357.

Download references

ACKNOWLEDGMENTS

We wish to thank an anonymous reviewer who made several useful critical remarks.

Funding

The structure of temperature variability was studied as part of state task no. 0148-2019-0009. The relationship with the climatic variability indices was analyzed with support from program no. 51 of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Vasil’ev.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, D.Y., Velikanov, N.V., Vodopyanov, V.V. et al. Relationship between the Brightness Temperature Anomalies of the Lower Troposphere and the Climate Indices in the Southern Urals. Izv. Atmos. Ocean. Phys. 55, 975–985 (2019). https://doi.org/10.1134/S0001433819090548

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819090548

Keywords:

Navigation