Skip to main content
Log in

Effect of Slope Mesorelief on the Spatial Variability of Soil Properties and Vegetation Index Based on Remote Sensing Data

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING SOILS AND VEGETATION USING SATELLITE DATA
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This article evaluates the effect of terrain morphometric parameters calculated from the digital elevation model (ASTER GDEM, 30 m) on the spatial variability of soil properties and the normalized difference vegetation index (NDVI) of a forb–oat mix. According to regression analysis, the morphometric parameters contribute 42% to the spatial variability of soil moisture; 59 and 46% to physical clay and humus content, respectively; and 86% to the NDVI of the oat-herb mixture. Indicators of moisture and physical clay and humus content in a plow layer of agro-grey soil of the transitional part of the slope are lower when compared with the alluvial part of the slope. In our opinion, this is a result of the development of erosional processes on the sloped terrain site, less favorable hydrothermal conditions, and human economic activities. The statistical relationships between soil properties and morphometric parameters of the terrain make it possible to build a predictive map of the soil properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aerokosmicheskii monitoring ob’’ektov neftegazovogo kompleksa Aerospace Monitoring of Oil and Gas Industrial Units), Bondur, V.G., Ed., Moscow: Nauchnyi mir, 2012.

  2. Afanas’ev, V.N. and Tsypin, A.P., Ekonometrika v pakete STATISTICA (Econometrics in the STATISTICA Package), Orenburg: GOU OGU, 2008.

  3. Agrokhimicheskie metody issledovaniya pochv (Agrochemical Methods for Soil Studies), Moscow: Nauka, 1975.

  4. Blagoveshchenskii, Yu.N., Tainy korrelyatsionnykh svyazei v statistike (Correlation Secrets in Statistics), Moscow: Nauchnaya kniga, INFRA-M, 2009.

  5. Bondur, V.G., Modern approaches to processing large hyper-spectral and multispectral aerospace data flows, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, pp. 840–852.

    Article  Google Scholar 

  6. Curran, P.J., Multispectral remote sensing of vegetation amount, Prog. Phys. Geogr., 1980, vol. 4, pp. 315–341.

    Article  Google Scholar 

  7. Dubovik, E.V. and Dubovik, D.V., Agrokhimicheskie svoistva chernozema v zavisimosti ot ekspozitsii i krutizny sklona, Agrokhimiya, 2012, no. 7, pp. 10–15.

  8. Huete, A.R. and Liu, H.Q., An error and sensitivity analysis of the atmospheric- and soil-correcting variants of the NDVI for the MODIS-EOS, IEEE Trans. Geosci. Remote Sens., 1994, vol. 32, pp. 897–905.

    Article  Google Scholar 

  9. Kashkin, V.B. and Sukhinin, A.I., Distantsionnoe zondirovanie Zemli iz kosmosa. Tsifrovaya obrabotka izobrazhenii (The Earth’s Remote Sensing from Space. Digital Data Processing), Moscow: Logos, 2001.

  10. Kashtanov, A.N. and Yavtushenko, V.E., Agroekologiya pochv sklonov (Agroecology of Slope Soils), Moscow: Kolos, 1997.

  11. Myneni, R.B., Hall, F.G., Sellers, P.J., and Marshak, A.L., The interpretation of spectral vegetation indexes, IEEE Trans. Geosci. Remote Sens., 1995, vol. 33, pp. 481–486.

    Article  Google Scholar 

  12. Neustruev, S.S., Genezis i geografiya pochv (Genesis and Geography of Soils), Moscow: Nauka, 1977.

  13. Sellers, P.J., Canopy reflectance, photosynthesis and transpiration, Int. J. Remote Sens., 1985, vol. 6, pp. 1335–1372.

    Article  Google Scholar 

  14. Shary, P.A., Land surface in gravity points classification by a complete system of curvatures, Math. Geol., 1995, vol. 27, no. 3, pp. 373–390.

    Article  Google Scholar 

  15. Shary, P.A., Personal research website on geomorphometry and applications, 2006. http://www.giseco.info/.

  16. Shary, P.A., Sharaya, L.S., and Mitusov, A.V., Fundamental quantitative methods of land surface analysis, Geoderma, 2002, vol. 107, nos. 1–2, pp. 1–32.

    Article  Google Scholar 

  17. Tucker, C.J., Vanpraet, C.L., Sharman, M.J., and Van Ittersum, G., Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984, Remote Sens. Environ., 1985, vol. 17, pp. 233–249.

    Article  Google Scholar 

  18. Zinchenko, T.D., Shary, P.A., Sharaya, L.S., Shitikov, V.K., and Abrosimova, E.V., Bioindikatsiya ekologicheskogo sostoyaniya malykh rek (Biological indication of the Ecological State of Small Rivers), Bukharin, O.V. and Rozenberg, G.S., Eds., Moscow: Nauka, 2007, ch. 2, sect. 2.2, pp. 65–77.

Download references

Funding

The study was carried out according to the state assignment of ISSA SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gopp.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopp, N.V., Nechaeva, T.V., Savenkov, O.A. et al. Effect of Slope Mesorelief on the Spatial Variability of Soil Properties and Vegetation Index Based on Remote Sensing Data. Izv. Atmos. Ocean. Phys. 55, 1329–1337 (2019). https://doi.org/10.1134/S0001433819090202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819090202

Keywords:

Navigation