Skip to main content
Log in

Revisiting the Origin of Seismicity in Fennoscandia

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract—

A review of the literature suggests that the seismic process in Fennoscandia (the Baltic Shield) is affected by at least four mechanisms: (1) northwest-to-southeast movement of the lithospheric plate under the Norwegian and Barents seas by spreading of the Mid-Atlantic Ridge from Iceland to Spitsbergen; (2) postglacial isostatic uplift; (3) local recent neotectonic movements; and (4) gravitational bending deformations on continental contact with the sea shelf along the Norwegian coast due to strong erosion from the rising crystalline domain of the Baltic Shield. The current seismicity of Fennoscandia is relatively low. The strongest earthquake in this area over the last 1000 years was the earthquake of 1627 which had a magnitude of M ≈ 6.5 and occurred in the Kandalaksha graben in the White Sea. However, Fennoscandia, including the Kola Peninsula and eastern Karelia, has a reliable history of a significant number of Pleistocene and even Holocene paleoseismic dislocations, whose parameters allow them to be associated with strong earthquakes which occurred at that time with magnitudes of 7–8 and even higher. It is likely that these paleo-events occurred at the last stage of the glacial age (9000–10 000 years ago) during the intense postglacial isostatic uplift of the Fennoscandia domain. Their possible recurrence can be estimated as tens of thousands of years from the time interval between consecutive glaciations. One should therefore recognize that the nature of current seismicity of Fennoscandia is determined by tectonic stresses caused by both the global effect of the northwestern uplifting lithospheric plate under the Norwegian Sea (a constant source of tectonic stress accumulation) and local tectonic uplifts (the north coast of Norway) or lowerings (the Swedish coast of the Gulf of Bothnia), rather than by postglacial stresses. In addition, the increased seismicity of southwestern Norway and the adjacent North Sea shelf is most likely caused by the formation of crest-like structures under the action of tensile stresses revealed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Agren, J. and Svensson, R., Postglacial land uplift model and system definition for the new Swedish Height System RH 2000, LMV-Rep. Geod. and Geogr. Inf. Syst., 2007, vol. 4.

    Google Scholar 

  2. Arvidsson, R., Fennoscandian earthquakes: Whole crust rupturing related to postglacial rebound, Science, 1996, vol. 274, pp. 744–746.

    Article  Google Scholar 

  3. Arvidsson, R. and Kulhanek, O., Seismodynamics of Sweden deduced from earthquake focal mechanisms, Geophys. J. Int., 1994, vol. 116, pp. 377–392.

    Article  Google Scholar 

  4. Assinovskaya, B.A., Gabsatarova, I.P., Panas, N.M., and Uski, M., 2014–2016 seismic events around the Karelian Isthmus and their nature, Seism. Instrum., 2019, vol. 55, no. 1, pp. 24–40. https://doi.org/10.21455/si2018.1-4

    Article  Google Scholar 

  5. Atakan, K., Lindholm, C.D., and Havskov, J., Earthquake swarm in Steigen, Northern Norway: An unusual example of intraplate seismicity, Terra Nova, 1994, vol. 6, no. 2, pp. 180–194.

    Article  Google Scholar 

  6. Avetisov, G.P., Seismotectonics of the Canadian Arctic, Fiz. Zemli., 1995, no. 5, pp. 8–20.

  7. Avetisov, G.P., Seismoaktivnye zony Arktiki (Seismoactive Zones of the Arctic), St. Petersburg, VNIIOG, 1996a.

  8. Avetisov, G.P., Tectonic factors of intraplate seismicity of the Western Arctic, Izv.,Phys. Solid Earth, 1996b, vol. 32, no. 12, pp. 975–985.

    Google Scholar 

  9. Boe, R., Fossen, H., and Smelror, M., Mesozoic sediments and structures onshore Norway and in the coastal zone, NGU Bull., 2010, vol. 450, pp. 15–32.

    Google Scholar 

  10. Bungum, H. and Olesen, O., The 31st of August 1819 Luroy earthquake revisited, Norw. J. Geol., 2005, vol. 85, pp. 245–252.

    Google Scholar 

  11. Bungum, H., Alsaker, A., Kvamme, L.B., and Hansen, R.A., Seismicity and seismotectonics of Norway and nearby continental shelf areas, J. Geophys. Res., 1991, vol. 96, pp. 2249–2265.

    Article  Google Scholar 

  12. Bungum, H., Lindholm, C.D., Dahl, A., Woo, G., Nadim, F., Holme, J.K., Gudmestad, O.T., Hagberg, T., and Karthigeyan, K., New seismic zoning maps for Norway, the North Sea and the UK, Seismol. Res. Lett., 2000, vol. 71, pp. 687–697.

    Article  Google Scholar 

  13. Bungum, H., Olesen, O., Pascal, C., Gibbons, S., Lindholm, C., and Vestol, O., To what extent is the present seismicity of Norway driven by postglacial rebound?, J. Geol. Soc., London, 2010, vol. 167, pp. 373–384.

    Article  Google Scholar 

  14. Byrkjeland, U., Bungum, H., and Eldholm, O., Seismotectonics of the Norwegian continental margin, J. Geophys. Res., 2000, vol. 105, pp. 6221–6236.

    Article  Google Scholar 

  15. Craig, T.J., Calais, E., Fleitout, L., Bollinger, L., and Scotti, O., Evidence for the release of long-term tectonic strain stored in continental interiors through intraplate earthquakes, Geophys. Res. Lett., 2016, vol. 43, no. 13, pp. 6826–6836. https://doi.org/10.1002/2016GL069359

    Article  Google Scholar 

  16. Dahl-Jensen, T., Larsen, T.B., and Voss, P., Greenland ice sheet monitoring network (GLISN): A seismological approach, Geol. Surv. Den. Greenl. Bull., 2010, vol. 20, pp. 55–58.

    Google Scholar 

  17. Ekman, M., A concise history of postglacial land uplift research (from its beginning to 1950), Terra Nova, 1991, vol. 3, pp. 358–365. https://doi.org/10.1111/j.1365-3121.1991.tb00163.x

    Article  Google Scholar 

  18. Ekman, M., Recent postglacial rebound of Fennoscandia: A short review and some numerical results, GeoRes.Forum, 1998, nos. 3–4, pp. 383–392.

  19. Erteleva, O.O., Sidorin, A.Ya., Sokolova, E.Yu., Lukk, A.A., Nikonov, A.A., Aptikaev, F.F., and Shvarev, S.V., Methods for assessing the seismic hazard of stable continental areas using combined paleoseismological and geophysical data, Seism. Instrum., 2019, vol. 55, no. 4, pp. 464–485. https://doi.org/10.3103/S0747923919040078

    Article  Google Scholar 

  20. Fejerskov, M. and Lindholm, C., Crustal stresses in and around Norway: An evaluation of stress generating mechanisms, Dynamics of the Norwegian Margin, Nottvedt, A., Ed., London: Geol. Soc., 2000.

    Google Scholar 

  21. Fjeldskaar, W., Lindholm, C., Dehls, J.F., and Fjeldskaar, I., Postglacial uplift, neotectonics and seismicity in Fennoscandia, Quat. Sci. Rev., 2000, vol. 19, nos. 14–15, pp. 1413–1422.

    Article  Google Scholar 

  22. Gorbatov, E.S., Sorokin, A.A., Marakhanov, A.V., and Larkov, A.S., Results of detailed paleoseismic studies of the Kindo Peninsula (Karelian coast of the White Sea), Seism. Instrum., 2018, vol. 54, no. 3, pp. 299–313. https://doi.org/10.3103/S0747923918030118

    Article  Google Scholar 

  23. Gregersen, S., Crustal stress regime in Fennoscandia from focal mechanisms, J. Geophys. Res., 1992, vol. 97, pp. 11821–11827.

    Article  Google Scholar 

  24. Gregersen, S., Intraplate earthquakes in Scandinavia and Greenland neotectonics or postglacial uplift, J. Ind. Geophys. Union, 2006, vol. 10, no. 1, pp. 25–30.

    Google Scholar 

  25. Gregersen, S., Korhonen, H., and Husebye, E.S., Fennoscandian dynamics: Present-day earthquake activity, Tectonophysics, 1991, vol. 189, pp. 333–344.

    Article  Google Scholar 

  26. Gudmundsson, A., Postglacial crustal doming, stresses and fracture formation with application to Norway, Tectonophysics, 1999, vol. 307, pp. 407–419.

    Article  Google Scholar 

  27. Hicks, E.C., Bungum, H., and Lindholm, C.D., Stress inversion of earthquake focal mechanism solutions from onshore and offshore Norway, Nor. Geol. Tidsskr., 2000, vol. 80, pp. 235–250.

    Article  Google Scholar 

  28. Hyvonen, T., Seismic Tomography and Earthquake Mechanism Beneath the Central Fennoscandian Shield, Rep. S-52, Institute of Seismology, Helsinki: University of Helsinki, 2008.

  29. Jamieson, T.F., On the history of the last geological changes in Scotland, Q. J. Geol. Soc. London, 1865, vol. 21, pp. 161–203.

    Article  Google Scholar 

  30. Johnston, A.C., Suppression of earthquakes by large continental ice sheets, Nature, 1987, vol. 330, pp. 467–469.

    Article  Google Scholar 

  31. Johnston, A.C., The effect of large ice sheets on earthquake genesis, Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, Gregersen, S. and Basham, P., Eds., Dordrecht: Kluwer, 1989, pp. 581–599.

    Google Scholar 

  32. Kakkuri, J., The stress phenomenon in the Fennoscandian shield, Geodesy and Geophysics, Kakkuri, J., Ed., Finnish Geod. Inst.,1993, pp. 71–86.

    Google Scholar 

  33. Keiding, M., Kreemer, C., Lindholm, C.D., Gradmann, S., Olesen, O., and Kierulf, H.P., A comparison of strain rates and seismicity for Fennoscandia: Depth dependency of deformation from glacial isostatic adjustment, Geophys. J. Int., 2015, vol. 202, pp. 1021–1028. https://doi.org/10.1093/gji/ggv207

    Article  Google Scholar 

  34. Kierulf, H.P., Steffen, H., Simpson, M.J.R., Lidberg, M., Wu, P., and Wang, H., A GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models, J. Geophys. Res., 2014, vol. 119, no. 8, pp. 6613–6629.

    Article  Google Scholar 

  35. Kolderup, C.F., Jordskjelv i Norge 1926–1930, Bergen Museums Aarbok, 1930, vol. 6.

    Google Scholar 

  36. Kujansuu, R., On Landslides in Finnish Lapland, Geol. Surv. Finl. Bull. 256, Otaniemi: Geologinen tutkimuslaitos, 1972.

  37. Larsen, T.B., Dahl-Jensen, T., Voss, P., Jorgensen, T.M., Gregersen, S., and Rasmussen, H.P., Earthquake seismology in Greenland—improved data with multiple applications, Geol. Surv. Den. Greenl. Bull., 2006, vol. 10, pp. 57–60.

    Google Scholar 

  38. Lindholm, C.D., Bungum, H., Hicks, E., and Villagran, M., Crustal stress and tectonics in Norwegian regions determined from earthquake focal mechanisms, Geol. Soc. London Spec. Publ., 2000, vol. 167, pp. 429–439.

    Article  Google Scholar 

  39. Lindholm, C., Roth, M., Bungum, H., and Faleide, J.I., Probabilistic and deterministic seismic hazard results and influence of the sedimentary More Basin, NE Atlantic, Mar. Pet. Geol., 2005, vol. 22, nos. 1–2, pp. 149–160.

    Article  Google Scholar 

  40. Lund, B., Schmidt, P., and Hieronymus, C., Stress Evolution and Fault Stability during the Weichselian Glacial Cycle, Stockholm: Swedish Nuclear Fuel and Waste Management Co., 2009, Tech. Rep. TR-09-15.

  41. Mantyniemi, P., Husebye, E.S., Kebeasy, T.R.M., Nikonov, A.A., Nikulin, V., and Pacesa, A., State-of-the-art of historical earthquake research in Fennoscandia and the Baltic republics, Ann. Geophys., 2004, vol. 47, nos. 2–3, pp. 611–619.

    Google Scholar 

  42. Mörner, N.-A., The Fennoscandian uplift and late Cenozoic geodynamics: Geological evidence, Geo J., 1979, vol. 3, no. 3, pp. 287–318.

    Google Scholar 

  43. Mörner, N.-A., An interpretation and catalogue of paleoseismicity in Sweden, Tectonophysics, 2005, vol. 408, nos. 1–4, pp. 265–307.

    Article  Google Scholar 

  44. Mörner, N.-A., Liquefaction structures from a high-magnitude paleoseismic event at about 12,400 C14-years BP in Southern Sweden, Open J. Earthquake Res., 2017, vol. 6, pp. 216–227. https://doi.org/10.4236/ojer.2017.64014

    Article  Google Scholar 

  45. Mörner, N.-A., Sjoberg, R., Audemard, F., Dawson, S., and Sun, G., Paleoseismicity and Uplift of Sweden, 33 IGC Excursion no. 11, 2008.

  46. Muir-Wood, R., Extraordinary deglaciation reverse faulting in Northern Fennoscandia, Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, Gregersen, S. and Basham, P.W., Eds., 1989, pp. 141–173.

    Google Scholar 

  47. Muir-Wood, R., Deglaciation seismotectonics: a principal influence on intraplate seismogenesis at high latitudes, Quat. Sci. Rev., 2000, vol. 19, nos. 14–15, pp. 1399–1411.

    Article  Google Scholar 

  48. Munier, R. and Fenton, C., Review of Postglacial Faulting: Current Understanding and Directions for Future Studies, Stockholm: Swedish Nuclear Fuel and Waste Management Co., 2004, Rep. R-04-17.

  49. Nikolaeva, S.N., Evidence of seismic events on the Murman coast in the late-glacial age and Holocene (northeast of the Baltic Shield), Izv. Ross. Geogr.O-va, 2013, vol. 165, no. 4, pp. 53–65.

    Google Scholar 

  50. Nikolaeva, S.B. and Evzerov, V.Ya., On the geodynamics of the Kola region in Late Pleistocene and Holocene: A review and results of studies, Vestn. Voronezh. Gos. Univ.: Ser. Geol., 2018, no. 1, pp. 5–14.

  51. Nikolaeva, S.B., Nikonov, A.A., Shvarev, S.V., and Rodkin, M.V., Detailed paleoseismogeological research on the flank of the Lake Imandra depression (Kola region): New approaches and results, Geol. Geofiz., 2018, vol. 59, no. 6, pp. 866–880. https://doi.org/10.15372/GiG20180608

    Article  Google Scholar 

  52. Nikonov, A.A., Seismicity of the Karelia region: Historical earthquakes, Glubinnoe stroenie i seismichnost' Karel’skogo regiona i ego obramleniya (Deep Structure and Seismicity of the Karelia Region and Its Framing), Sharov, N.V., Ed., Petrozavodsk: KNTs RAN, 2004.

  53. Nikonov, A.A. and Shvarev, S.V., Seismolineaments and devastating earthquakes in the Russian part of the Baltic Shield: New solutions for the past 13 000 years, Materialy Mezhdunarodnoi konferentsii “Geologo–geofizicheskaya sreda i raznoobraznye proyavleniya seismichnosti” (Proceedings of the International Conference “The Geological–Geophysical Environment and Various Manifestations of Seismicity), Neryungri: Izd. Tekhn. Inst. (filiala) SVFU, 2015, pp. 243–251.

  54. Nikonov, A.A. and Zykov, D.S., Indicators of strong earthquakes in the eastern sector of the Murmansk zone (the Karpinskii line), Tr. Fersman. nauchn. Sessii GI KNTs RAN (Transactions of the Fersman Scientific Session of the Geological Institute of Kola Science Center, Russian Academy of Sciences), 2017, no. 14, pp.143–148.

  55. Nikonov, A.A., Shvarev, S.V., Sim, L.A., Rodkin, M.V., Biske, G.S., and Marinin, A.V., Paleoseismodeformations of hard rocks in the Karelian isthmus, Dokl. Earth Sci., 2014, vol. 457, no. 2, pp. 1008–1013.

    Article  Google Scholar 

  56. Nikonov, A.A., Poleshchuk, A.V., and Zykov, D.S., On latest faults and paleoseismodislocations in the Onega paleoproterozoic structure of the Fennoscandian shield, Tr. Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk, 2017, no. 11, pp. 3–18. https://doi.org/10.17076/geo549

  57. Nikonov, A.A., Zykov, D.S., Nikolaeva, S.B., and Shvarev, S.V., The suture zone of the " Karpinskii line" in northern Europe as a high-order active tectonic and seismic seismolineament, Problemy tektoniki i geodinamiki zemnoi kory i mantii: Materialy L Tekton. soveshch. (Problems in Tectonics and Geodynamics of the Earth Crust and Mantle: Proceedings of the Meeting on Tectonics), 2018, pp. 52–56.

  58. Olesen, O., Bungum, H., Dehls, J., Lindholm, C., Pascal, C., and Roberts, D., Neotectonics, seismicity and contemporary stress field in Norway: Mechanisms and implications, Quaternary Geology of Norway, Olsen, L., Fredin, and O., Olesen, O., Eds., Geol. Surv. Norway, 2013a, pp. 145–174.

    Google Scholar 

  59. Olesen, O., Kierulf, H.P., Bronner, M., Dalsegg, E., Fredin, O., and Solbakk, T., Deep weathering, neotectonics and strandflat formation in Nordland, Northern Norway, Nor.J. Geol., 2013b, vol. 93, pp. 189–213.

    Google Scholar 

  60. Poleshchuk, A.V., Zykov, D.S., and Shvarev, S.V., Some features of deformation structures in an esker on the southern margin of the Fennoscandian shield, Bull. Geol. Soc. Finl., 2018, vol. 90, no. 2, pp. 291–300. https://doi.org/10.17741/bgsf/90.2.011

    Article  Google Scholar 

  61. Quinlan, G., Postglacial rebound and the focal mechanisms of Eastern Canadian earthquakes, Can. J. Earth Sci., 1984, vol. 21, pp. 1018–1023. https://doi.org/10.1139/e84-106

    Article  Google Scholar 

  62. Riis, F. and Fjeldskaar, W., On the magnitude of the Late Tertiary and Quaternary erosion and its significance for the uplift of Scandinavia and the Barents Sea, Structural and Tectonic Modelling and Its Application to Petroleum Geology, Larsen, R.M., Brekke, H., Larsen, B.T., and Talleraas, E., Eds., Amsterdam: Elsevier, 1992, pp. 163–185.

    Google Scholar 

  63. Sauber, J. and Molnia, B., Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska, Glob. Planet. Change, 2004, vol. 42, pp. 279–293. https://doi.org/doi.org/10.1016/j.gloplacha.2003.11.012.

    Book  Google Scholar 

  64. Shvarev, S.V. and Rodkin, M.V., Structural position and parameters of the paleoearthquakes in the area of Vottovaara Mountain (Middle Karelia, eastern part of the Fennoscandian Shield), Seism. Instrum., 2018, vol. 44, no. 2, pp. 199–218. https://doi.org/10.3103/S0747923918020093

    Article  Google Scholar 

  65. Shvarev, S.V., Nikonov, A.A., and Rusakov, A.V., Wedge-shaped structures in unconsolidated deposits of the Neva lowland as a result of seismic effects in the Early Holocene: The Nizino case study, Geomorfologiya, 2018a, no. 2, pp. 99–114. https://doi.org/10.7868/S0435428118020086

  66. Shvarev, S.V., Nikonov, A.A., Rodkin, M.V., and Poleshchuk, A.V., The active tectonics of the Vuoksi Fault Zone in the Karelian Isthmus: Parameters of paleoearthquakes estimated from bedrock and soft sediment deformation features, Bull. Geol. Soc. Finl., 2018b, vol. 90, no. 2, pp. 257–273. https://doi.org/10.17741/bgsf/90.2.009

    Article  Google Scholar 

  67. Sidorin, A.Ya., Problems in seismic hazard assessment for atomic energy objects used in the Kola Peninsula and Karelia, Nauka Tekhnol. Razrab., 2018, vol. 97, no. 2, pp. 45–52. https://doi.org/10.21455/std2018.2-3

    Article  Google Scholar 

  68. Slunga, R.S., Fault mechanism of Fennoscandian earthquakes and regional crustal stresses, Geol. Foeren. Stockholm Foerh., 1981, vol. 103, pp. 27–31.

    Article  Google Scholar 

  69. Slunga, R.S., Baltic shield seismicity: The results of a regional network, Geophys. Res. Lett., 1984, vol. 11, pp. 1247–1250.

    Article  Google Scholar 

  70. Slunga, R.S., Focal mechanisms and crustal stresses in the Baltic Shield, Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, Gregersen, S. and Basham, P.W., Eds., Dordrecht: Kluwer, 1989, pp. 261–276.

    Google Scholar 

  71. Solheim, A., Berg, K., Forsberg, C.F., and Bryn, P., The Storegga slide complex: Repetitive large scale sliding with similar cause and development, Mar. Pet. Geol., 2005, vol. 22, pp. 97–107.

    Article  Google Scholar 

  72. Steffen, H. and Wu, P., Glacial isostatic adjustment in Fennoscandia: A review of data and modeling, J. Geodyn., 2011, vol. 52, pp. 169–204.

    Article  Google Scholar 

  73. Steffen, R., Wu, P., Steffen, H., and Eaton, D.W., The effect of earth rheology and ice-sheet size on fault slip and magnitude of post glacial earthquakes, Earth Planet. Sci. Lett., 2014a, vol. 388, pp. 71–80.

    Article  Google Scholar 

  74. Steffen, R., Wu, P., Steffen, H., and Eaton, D.W., On the implementation of faults in finite-element glacial isostatic adjustment models, Comput. Geosci., 2014b, vol. 62, pp. 150–159.

    Article  Google Scholar 

  75. Stephansson, O., Ridge push and glacial rebound as rock stress generators in Fennoscandia, Bull. Geol. Inst. Univ.Uppsala, Sweden, 1988, vol. 14, pp. 39–48.

    Google Scholar 

  76. Subetto, D.A., Shvarev, S.V., Nikonov, A.A., Zaretskaya, N.E., Poleshchuk, A.V., and Potakhin, M.S., New evidence of the Vuoksi River origin by geodynamic cataclysm, Bull. Geol. Soc. Finl., 2018, vol. 90, no. 2, pp. 275–289. https://doi.org/10.17741/bgsf/90.2.010

    Article  Google Scholar 

  77. Usenko, S.V., Boiko, A.N., and Prokhorova, T.V., Seafloor structure in the North Atlantic region between the Kolbeinsey Ridge and the Jan Mayen microcontinent, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 11, pp. 1546–1558. https://doi.org/10.1134/S0001433818110087

    Article  Google Scholar 

  78. Vestol, O., Determination of postglacial land uplift in Fennoscandia from leveling, tide-gauges and continuous GPS stations using least squares collocation, Geodesy, 2006, vol. 80, pp. 248–258.

    Article  Google Scholar 

  79. Voss, P., Poulsen, S.K., Simonsen, S.B., and Gregersen, S., Seismic hazard assessment of Greenland, Geol. Surv. Den. Greenl. Bull., 2007, vol. 13, pp. 57–60.

    Google Scholar 

  80. Wahlstrom, R., Seismodynamics and postglacial faulting in the Baltic Shield, Earthquakes at North-Atlantic Passive Margins: Neotectonics And Postglacial Rebound, Gregersen, S. and Basham, P.W., Eds., Dordrecht: Kluwer, 1989, pp. 467–482.

    Google Scholar 

  81. Wu, P. and Hasegawa, H.S., Induced stresses and fault potential in Eastern Canada due to a disc load: A preliminary analysis, Geophys. J. Int., 1996, vol. 125, pp. 415–430. https://doi.org/10.1111/j.1365-246X.1996.tb00008.x

    Article  Google Scholar 

  82. Wu, P., Johnston, P., and Lambeck, K., Postglacial rebound and fault instability in Fennoscandia, Geophys. J. Int., 1999, vol. 139, pp. 657–670.

    Article  Google Scholar 

Download references

Funding

This work was conducted within the state research target of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lukk.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukk, A.A., Leonova, V.G. & Sidorin, A.Y. Revisiting the Origin of Seismicity in Fennoscandia. Izv. Atmos. Ocean. Phys. 55, 743–758 (2019). https://doi.org/10.1134/S000143381907003X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143381907003X

Keywords:

Navigation