Skip to main content
Log in

Determination of the Total Ozone Content in Cloudy Conditions based on Data from the IKFS-2 Spectrometer onboard the Meteor-M no. 2 Satellite

  • PHYSICAL PRINCIPLES OF EARTH STUDIES FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A new technique has been developed to obtain the total ozone content (TOC) under cloudy conditions from the spectra of outgoing thermal IR radiation measured by a satellite IRFS‑2 spectrometer. Analysis of the technique errors has shown that the differences between the obtained TOC and independent satellite (OMI) and ground-based (Dobson, Brewer, and M-124 instruments) measurements are usually 3–5%. The highest differences (up to 10%) are observed in the southern polar latitudes in the presence of an ozone hole over Antarctica. IRFS‑2 allowed the study of ozone miniholes over Russia in the first quarter of 2016. The measurements show an almost twofold decrease in TOC on certain days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Asmus, V.V., Timofeyev, Yu.M., Polyakov, A.V., Uspenskiy, A.B., Golovin, Yu.M., Zavelevich, F.S., Kozlov, D.A., Rublev, A.N., Kukharskii, A.V., Pyatkin, V.P., and Rusin, E.V., Atmospheric temperature sounding with the Fourier spectrometer, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 4, pp. 428–432.

    Article  Google Scholar 

  2. Boynard, A., Hurtmans, D., Koukouli, M.E., Goutail, F., Bureau, J., Safieddine, S., Lerot, C., Hadji-Lazaro, J., Pommereau, J.-P., Pazmino, A., Zyrichidou, I., Balis, D., Barbe, A., Mikhailenko, S.N., Loyola, D., Valks, P., Roozendael, M.V., Coheur, P.-F., and Clerbaux, C., Seven years of IASI ozone retrievals from FORLI: Validation with independent total column and vertical profile measurements, Atmos. Meas. Tech. Discuss., 2016. doi 10.5194/amt-2016-11

  3. Garkusha, A.S., Polyakov, A.V., Timofeyev, Yu.M., and Virolainen, Ya.A., Determination of the total ozone content from data of satellite IR Fourier-spectrometer, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 4, pp. 433–440.

    Article  Google Scholar 

  4. Golovin, Yu.M., Zavelevich, F.S., Nikulin, A.G., Kozlov, D.A., Monakhov, D.O., Kozlov, I.A., Arkhipov, S.A., Tselikov, V.A., and Romanovskii, A.S., Spaceborne infrared Fourier-transform spectrometers for temperature and humidity sounding of the Earth’s atmosphere, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, pp. 1004–1015.

    Article  Google Scholar 

  5. Hassler, B., Petropavlovskikh, I., Staehelin, J., August, T., Bhartia, P.K., Clerbaux, C., Degenstein, D., De Maziere, M., Dinelli, B.M., Dudhia, A., Dufour, G., Frith, S.M., Froidevaux, L., Godin-Beekmann, S., Granville, J., Harris, N.R.P., Hoppel, K., Hubert, D., Kasai, Y., Kurylo, M.J., Kyrölä, E., Lambert, J.-C., Levelt, P.F., McElroy, C.T., McPeters, R.D., Munro, R., Nakajima, H., Parrish, A., Raspollini, P., Remsberg, E.E., Rosenlof, K.H., Rozanov, A., Sano, T., Sasano, Y., Shiotani, M., Smit, H.G.J., Stiller, G., Tamminen, J., Tarasick, D.W., Urban, J., Veefkind, J.P., Vigouroux, C., von Clarmann, T., von Savigny, C., Walker, K.A., Weber, M., Wild, J., and Zawodny, J.M., Past changes in the vertical distribution of ozone, Part 1: Measurement techniques, uncertainties and availability, Atmos. Meas. Tech., 2014, vol. 7, pp. 1395–1427.

    Article  Google Scholar 

  6. King, M.D., Platnick, S., Menzel, W.P., Ackerman, S.A., and Hubanks, P.A., Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites, IEEE Trans. Geosci. Remote Sens., 2013, vol. 51, no. 7, pp. 3826–3852.

    Article  Google Scholar 

  7. McPeters, R.D., Frith, S., and Labow, G.J., OMI total column ozone: Extending the long-term data record, Atmos. Meas. Tech., 2015, vol. 8, pp. 4845–4850.

    Article  Google Scholar 

  8. Polyakov, A.V., Timofeyev, Yu.M., Virolainen, Ya.A., Uspensky, A.B., Zavelevich, F.S., Golovin, Yu.M., Kozlov, D.A., Rublev, A.N., and Kukharsky, A.V., Satellite atmospheric sounder IRFS-2. 1. Analysis of outgoing radiation spectra measurements, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 9, pp. 1185–1191.

    Article  Google Scholar 

  9. Timofeyev, Yu.M., Satellite methods for studying the gas composition of the atmosphere, Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana, 1989, vol. 25, no. 5, pp. 451–472.

    Google Scholar 

  10. Virolainen, Ya.A., Timofeyev, Yu.M., Poberovskii, A.V., Polyakov, A.V., and Shalamyanskii, A.M., Empirical assessment of errors in total ozone measurements with different instruments and methods, Atmos. Oceanic Opt., 2017, vol. 30, no. 4, pp. 382–388.

    Article  Google Scholar 

  11. Zvyagintsev, A.M., Ivanova, N.S., Nikiforova, M.P., Kuznetsova, I.N., and Vargin, P.N., Ozone content over the Russian Federation in the first quarter of 2016, Russ. Meteorol. Hydrol., 2016, vol. 41, no. 5, pp. 373–378.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out at St. Petersburg State University under the financial support of the Russian Science Foundation (grant no. 14-17-00096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Polyakov.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garkusha, A.S., Polyakov, A.V., Timofeev, Y.M. et al. Determination of the Total Ozone Content in Cloudy Conditions based on Data from the IKFS-2 Spectrometer onboard the Meteor-M no. 2 Satellite. Izv. Atmos. Ocean. Phys. 54, 1244–1248 (2018). https://doi.org/10.1134/S0001433818090141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818090141

Keywords:

Navigation