Skip to main content
Log in

A Study of the Column Methane Short-Term Variability in the Atmosphere on a Regional Scale

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The short-term variability of the methane column has been analyzed based on ground-based observations and numerical modeling at the St. Petersburg NDACC station for 2009–2016. The methane variability for different atmospheric altitude layers is presented. Short-term methane variability is found to be significant compared to long-term trends. The results of numerical experiments with the global chemistry-transport model of the troposphere and stratosphere demonstrate that short-term methane variability is basically defined by methane concentration changes between an altitude of 5 km and 20 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. P. Smyshlyaev, E. A. Mareev, V. Ya. Galin, and P. A. Blakitnaya, “Modeling the influence of methane emissions from Arctic gas hydrates on regional variations in composition of the lower atmosphere,” Izv., Atmos. Ocean. Phys. 51 (4), 412–422 (2015).

    Article  Google Scholar 

  2. E. D. Hausman and M. B. McElroy, “Role of sea-surface temperature and ocean circulation changes in the reorganization of the global carbon cycle at the last glacial termination,” Global Biogeochem. Cycles 13 (2), 371–381 (1999).

    Article  Google Scholar 

  3. A. A. Kiselev and I. L. Karol, “Modeling of the long-term tropospheric trends of hydroxyl radical for the Northern Hemisphere,” Atmos. Environ. 34 (29–30), 5271–5282 (2000).

    Article  Google Scholar 

  4. A. A. Kiselev and I. L. Karol, “The ratio between nitrogen oxides and carbon monoxide total emissions as precursors of tropospheric hydroxyl content evolution,” Atmos. Environ. 36 (39–40), 5971–5981 (2002).

    Article  Google Scholar 

  5. I. L. Karol and A. A. Kiselev, “Atmospheric methane and global climate,” Priroda No. 7, 47–52 (2004).

    Google Scholar 

  6. E. J. Dlugokencky, L. P. Steele, P. M. Lang, and K. A. Masarie, “The growth-rate and distribution of atmospheric methane,” J. Geophys. Res.: Atmos. 99, 17021–17043 (1994).

    Article  Google Scholar 

  7. M. V. Makarova, O. Kirner, Yu. M. Timofeev, et al., “Analysis of methane total column variations in the atmosphere near St. Petersburg using ground-based measurements and simulations,” Izv., Atmos. Ocean. Phys. 51 (2), 177–185 (2015).

    Article  Google Scholar 

  8. M. V. Makarova, O. Kirner, Yu. M. Timofeev, A. V. Poberovskii, Kh. Kh. Imkhasin, S. I. Osipov, and B. K. Makarov, “Annual cycle and long-term trend of the methane total column in the atmosphere over the St. Petersburg region,” Atmos. Ocean. Phys. 51 (4), 431–438 (2015).

    Article  Google Scholar 

  9. L. N. Yurganov, I. Leifer, and C. Lund Myhre, “Seasonal and interannual variability of atmospheric methane over Arctic Ocean from satellite data,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 13 (2), 107–119 (2016).

    Article  Google Scholar 

  10. O. A. Anisimov and V. A. Kokorev, “Comparative analysis of land, marine, and satellite observations of methane in the lower Atmosphere in the Russian Arctic under conditions of climate change,” Izv., Atmos. Ocean. Phys. 51 (9), 979–991 (2015).

    Article  Google Scholar 

  11. R. Sussmann, F. Forster, M. Rettinger, and N. Jones, “Strategy for high accuracy and precision retrieval of atmospheric methane from the mid infrared FTIR network,” Atmos. Meas. Tech. 4, 1943–1964 (2011). doi 10.5194/amt-4-1943-2011

    Article  Google Scholar 

  12. E. Sepúlveda, M. Schneider, F. Hase, et al., “Long term validation of tropospheric column averaged CH4 mole fractions obtained by mid infrared ground based FTIR spectrometry,” Atmos. Meas. Tech. 5, 1425–1441 (2012). doi 10.5194/amt-5-1425-2012

    Article  Google Scholar 

  13. A. S. Ginzburg, A. A. Vinogradova, and E. I. Fedorova, “Some features of seasonal variations in the methane content in the atmosphere over Northern Eurasia,” Izv., Atmos. Ocean. Phys. 47 (1), 45–58 (2011).

    Article  Google Scholar 

  14. E. J. Dlugokencky, S. Houweling, L. Bruhwiler, et al., “Atmospheric methane levels off: Temporary pause or a new steady state?,” Geophys. Res. Lett. 30, 1992–1995 (2003). doi 10.1029/2003GL018126

    Article  Google Scholar 

  15. R. Sussmann, F. Forster, M. Rettinger, and P. Bousquet, “Renewed methane increase for five years (2007–2011) observed by solar FTIR spectrometry,” Atmos. Chem. Phys 12, 4885–4891 (2012). doi 10.5194/acp-12-4885-2012

    Article  Google Scholar 

  16. J. Angelbratt, J. Mellqvist, T. Blumenstock, T. Borsdorff, S. Brohede, P. Duchatelet, F. Forster, F. Hase, E. Mahieu, D. Murtagh, A. K. Petersen, M. Schneider, R. Sussmann, and J. Urban, “A new method to detect long term trends of methane (CH4) and nitrous oxide (N2O) total columns measured within the NDACC ground-based high resolution solar FTIR network,” Atmos. Chem. Phys. 11, 6167–6183 (2011). doi 10.5194/acp-11-6167-2011

    Article  Google Scholar 

  17. M. Rigby, R. G. Prinn, P. J. Fraser, et al., “Renewed growth of atmospheric methane,” Geophys. Res. Lett. 35, L228005 (2008). doi 10.1029/2008GL036037

    Google Scholar 

  18. D. K. Arabadzhyan, N. N. Paramonova, M. V. Makarova, and A. V. Poberovskii, “Analysis of temporal variability of methane concentration in the atmosphere using ground-based observations,” Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim. 2 (3), 204–215 (2015).

    Google Scholar 

  19. F. Hase, T. Blumenstock, and C. Paton-Walsh, “Analysis of the instrumental line shape of high resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software,” Appl. Opt. 38 (15), 3417–3422 (1999).

    Article  Google Scholar 

  20. F. Hase, J. W. Hannigan, M. T. Coffey, et al., “Intercomparison of retrieval codes used for the analysis of high-resolution ground-based FTIR measurements,” J. Quant. Spectrosc. Radiat. Transfer 87, 25–52 (2004).

    Article  Google Scholar 

  21. Upper air sounding. http://weather.uwyo.edu/upperair/ sounding.html.

  22. D. K. Arabadzhyan, N. N. Paramonova, M. V. Makarova, and A. V. Poberovskii, “Analysis of temporal variability of methane concentration in the atmosphere using ground-based observations,” Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim. 2 (3), 204–215 (2015).

    Google Scholar 

  23. V. Ya. Galin, S. P. Smyshlyaev, and E. M. Volodin, “Combined chemistry-climate model of the atmosphere,” Izv., Atmos. Ocean. Phys. 43 (4), 399–412 (2007).

    Article  Google Scholar 

  24. https://www.ecmwf.int/en/research/climate-reanalysis/ era-interim.

  25. V. L. Dvortsov, S. G. Zvenigorodsky, and S. P. Smyshlyaev, “On the use of Isaksen–Luther method of computing photodissociation rates in photochemical models,” J. Geophys. Res. 104 (D21), 26401–26417 (1999). doi 10.1029/1999JD900820

    Article  Google Scholar 

  26. A. W. DeWolfe, A. Wilson, D. M. Lindholm, C. K. Pankratz, M. A. Snow, and T. N. Woods, “Solar irradiance data products at the LASP Interactive Solar IRradiance Data Center (LISIRD),” in American Geophysical Union Fall Meeting, 2010, GC21B-0881.

  27. S. P. Smyshlyaev, V. Ya. Galin, P. A. Blakitnaya, and A. K. Lemishchenko, “Analysis of the sensitivity of the composition and temperature of the stratosphere to the variability of spectral solar radiation fluxes induced by the 11-year cycle of solar activity,” Izv., Atmos. Ocean. Phys. 52 (1), 16–32 (2016).

    Article  Google Scholar 

  28. I. Fung, J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele, P. J. Fraser, “Three-dimensional model synthesis of the global methane cycle,” J. Geophys. Res. 96, 13033–13065 (1991).

    Article  Google Scholar 

  29. G. Janssens-Maenhout, F. Dentener, J. Van Aardenne, S. Monni, V. Pagliari, L. Orlandini, Z. Klimont, J. Kurokawa, H. Akimoto, T. Ohara, R. Wankmueller, B. Battye, D. Grano, A. Zuber, and T. Keating, EDGAR-HTAP: A Harmonized Gridded Air Pollution Emission Dataset Based on National Inventories (European Commission Publications Office, Ispra (Italy), 2012), JRC Rep. 68434.

  30. WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project, Rep. No. 52, Geneva: 2011.

  31. SCIAMACHY. https://earth.esa.int/instruments/sciamachy/.

  32. http://www.gosat.nies.go.jp/index_e.html.

  33. TCCON: https://tccon_wiki.caltech.edu/.

Download references

ACKNOWLEDGMENTS

The analysis of the measurement and modeling results was performed as part of project no. 14-17-00096 of the Russian Scientific Foundation. The influence of arctic sources of methane was estimated as part of the project no. 17-05-01277-а of the Russian Foundation for Basic Research. The global model of the gas composition of the atmosphere is developed within the state assignment of the Ministry of Education and Science of the Russian Federation (project no. 5.6493.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Cherepova or M. V. Makarova.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherepova, M.V., Smyshlyaev, S.P., Makarova, M.V. et al. A Study of the Column Methane Short-Term Variability in the Atmosphere on a Regional Scale. Izv. Atmos. Ocean. Phys. 54, 558–569 (2018). https://doi.org/10.1134/S0001433818060038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818060038

Keywords:

Navigation