Skip to main content
Log in

The Effect of Internal Gravity Waves on Fluctuations in Meteorological Parameters of the Atmospheric Boundary Layer

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Variations in the intensity of turbulence during wave activity in the stable atmospheric boundary layer over a homogeneous steppe surface have been analyzed. Eight wave activity episodes recorded with a Doppler sodar in August 2015 at the Tsimlyansk Scientific Station of the Obukhov Institute of Atmospheric Physics have been studied. These episodes include seven trains of Kelvin–Helmholtz waves and one train of buoyancy waves. Variations in the rms deviation of the vertical wind-velocity component, the temperature structure parameter, and vertical heat and momentum fluxes have been estimated for each episode of wave activity. It has been found that Kelvin–Helmholtz waves slightly affect the intensity of turbulence, while buoyancy waves cause the temperature structure parameter and the vertical fluxes to increase by more than an order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Baklanov, B. Grisogono, R. Bornstein, et al., “The nature, theory and modeling of atmospheric planetary boundary layers,” Bull. Am. Meteorol. Soc. 92, 123–128 (2011).

    Article  Google Scholar 

  2. A. A. M. Holtslag, G. Svensson, P. Baas, et al., “2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models,” Bull. Am. Meteorol. Soc. 94, 1691–1706 (2013).

    Article  Google Scholar 

  3. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978).

    Google Scholar 

  4. C. J. Nappo, An Introduction to Atmospheric Gravity Waves (Elsevier, 2012).

    Google Scholar 

  5. D. Fritts, L. Wang, M. A. Geller, et al., “Numerical modeling of multiscale dynamics at a high Reynolds number: Instabilities, turbulence, and an assessment of Ozmidov and Thorpe scales,” J. Atmos. Sci. 73, 555–578 (2013).

    Article  Google Scholar 

  6. M. D. Patterson, C. P. Caulfield, J. N. McElwaine, et al., “Time dependent mixing in stratified Kelvin–Helmholtz billows: Experimental observations,” Geophys. Res. Lett. 33, L15608 (2006).

    Article  Google Scholar 

  7. J. J. Finnigan, F. Einaudi, and D. Fua, “The interaction between an internal gravity wave and turbulence in the stably-stratified nocturnal boundary layer,” J. Atmos. Sci. 41, 2409–2436 (1984).

    Article  Google Scholar 

  8. R. L. Coulter, “A case study of turbulence nocturnal boundary in the stable layer,” Boundary-Layer Meteorol. 52, 75–91 (1990).

    Article  Google Scholar 

  9. J. Sun, D. H. Lenschow, S. P. Burns, et al., “Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers,” Boundary-Layer Meteorol. 110, 255–279 (2004).

    Article  Google Scholar 

  10. F. Einaudi and J. J. Finnigan, “Wave–turbulence dynamics in the stably stratified boundary layer,” J. Atmos. Sci. 50, 1841–1864 (1993).

    Article  Google Scholar 

  11. J. J. Finnigan, “Kinetic energy transfer between internal gravity waves and turbulence,” J. Atmos. Sci. 45, 486–505 (1988).

    Article  Google Scholar 

  12. J. Sun, C. J. Nappo, L. Mahrt, et al., “Review of wave–turbulence interactions in the stable atmospheric boundary layer,” Rev. Geophys. 53, 956–993 (2015).

    Article  Google Scholar 

  13. R. B. Smith, “The generation of lee waves by the Blue Ridge,” J. Atmos. Sci. 33, 507–519 (1976).

    Article  Google Scholar 

  14. L. Eymard and A. Weill, “A study of gravity waves in the planetary boundary layer by acoustic sounding,” Boundary-Layer Meteorol. 17, 231–245 (1979).

    Article  Google Scholar 

  15. W. Blumen, R. Banta, S. Burns, et al., “Turbulence statistics of a Kelvin–Helmholtz billow event observed in the nighttime boundary layer during the Cooperative Atmospheric-Surface Exchange Study field program,” Dyn. Atmos. Oceans 34, 189–204 (2001).

    Article  Google Scholar 

  16. V. S. Lyulyukin, M. A. Kallistratova, R. D. Kouznetsov, D. D. Kuznetsov, I. P. Chunchuzov, and G. Yu. Chirokova, “Internal gravity-shear waves in the atmospheric boundary layer from acoustic remote sensing data,” Izv., Atmos. Ocean. Phys. 51 (2), 193–202 (2015).

    Article  Google Scholar 

  17. I. Petenko, G. Mastrantonio, A. Viola, et al., “Wavy vertical motions in the ABL observed by sodar,” Boundary-Layer Meteorol. 143 (1), 125–141 (2012).

    Article  Google Scholar 

  18. V. A. Banakh and I. N. Simalikho, “Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal,” Atmos. Meas. Tech. 9, 5239–5248 (2016).

    Article  Google Scholar 

  19. L. R. Tsvang, S. L. Zubkovski, B. A. Kader, et al., “International turbulence comparison experiment (ITCE-81),” Boundary-Layer Meteorol. 31, 325–348 (1985).

    Article  Google Scholar 

  20. R. D. Kouznetsov, “LATAN-3 sodar for investigation of the atmospheric boundary layer,” Opt. Atmos. Okeana 20 (8), 749–753 (2007).

    Google Scholar 

  21. R. D. Kouznetsov, “The multi-frequency sodar with high temporal resolution,” Meteorol. Z. 18, 169–173 (2009).

    Article  Google Scholar 

  22. V. I. Tatarskii, Wave Propagation in the Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  23. I. V. Petenko and V. A. Bezverkhnii, “Temporal scales of convective coherent structures derived from sodar data,” Meteorol. Atmos. Phys. 71, 105–116 (1999).

    Article  Google Scholar 

  24. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics, Part 2 (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  25. M. A. Kallistratova, R. D. Kouznetsov, V. F. Kramar, et al., “Profiles of vertical wind speed variances within nocturnal low-level jets observed with a sodar,” J. Atmos. Oceanic Technol. 30, 1970–1977 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Zaitseva.

Additional information

Original Russian Text © D.V. Zaitseva, M.A. Kallistratova, V.S. Lyulyukin, R.D. Kouznetsov, D.D. Kuznetsov, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2018, Vol. 54, No. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitseva, D.V., Kallistratova, M.A., Lyulyukin, V.S. et al. The Effect of Internal Gravity Waves on Fluctuations in Meteorological Parameters of the Atmospheric Boundary Layer. Izv. Atmos. Ocean. Phys. 54, 173–181 (2018). https://doi.org/10.1134/S0001433818020160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818020160

Keywords

Navigation