Skip to main content
Log in

Critical Latitude in Tidal Dynamics Using the Kara Sea as an Example

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

It is well known that, within the linear nonviscous equations of tidal dynamics, the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components unlimitedly increase when approaching the critical latitude. It is also known that the linear equations of tidal dynamics with a constant and specified vertical eddy viscosity indicate the occurrence of significant tidal velocity shears in the near-bottom layer, which are responsible for increasing the baroclinic tidal energy dissipation, the turbulent kinetic energy, and the thickness of the bottom boundary layer. The first circumstance—the growth of the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components—is due to the elimination in the original equations of small terms, which are small everywhere except for the critical latitude zone. The second circumstance—the occurrence of significant tidal velocity shears—is due to the fact that internal tidal waves, which induce the dissipation of the baroclinic tidal energy and the diapycnal diffusion, are either not taken into account or described inadequately. It is suggested that diapycnal diffusion can lead to the degeneration (complete or partial) of tidal velocity shears, with all the ensuing consequences. The aforesaid is confirmed by simulation results obtained using the QUODDY-4 high-resolution three-dimensional finite-element hydrostatic model along the 66.25° E section, which passes in the Kara Sea across the critical latitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Vlasenko, N. Stashchuk, K. Hutter, and K. Sabinin, “Nonlinear internal waves forced by tides near the critical latitude,” Deep-Sea Res. I 50 (3), 317–338 (2003).

    Article  Google Scholar 

  2. T. Furevik and A. Foldvik, “Stability of M2 critical latitude in the Barents Sea,” J. Geophys. Res. 101 (C4), 8823–8837 (1996).

    Article  Google Scholar 

  3. C. F. Postlethwaite, M. A. Morales Maqueda, V. le Fouest, et al., “The effect of tides on dense water formation in Arctic shelf seas,” Ocean Sci. 7 (2), 203–217 (2011).

    Article  Google Scholar 

  4. M. V. Luneva, Y. Aksenov, J. D. Harle, et al., “The effects of tides on the water mass mixing and sea ice in the Arctic Ocean,” J. Geophys. Res.: Oceans 120 (10), 6669–6699 (2015).

    Article  Google Scholar 

  5. J. T. C. Ip and D. R. Lynch, QUODDY3 User’s manual: Comprehensive coastal circulation simulation model using finite elements: Nonlinear prognostic time-stepping model, Rep. No. NML95-1, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, 1995.

    Google Scholar 

  6. International Bathymetric Chart of the Arctic Ocean (National Geophysical Data Center, Boulder, Colorado, 2008). http://www.ibcao.org/.

  7. J. Smagorinsky, “General circulation experiments with the primitive equations,” Mon. Weather Rev. 91 (3), 99–164 (1963).

    Article  Google Scholar 

  8. G. L. Mellor and T. Yamada, “Development of a turbulence closure model for geophysical fluid problems,” Rev. Geophys. Space Phys. 20 (4), 854–875 (1982).

    Article  Google Scholar 

  9. Joint US–Russian Atlas of the Arctic Ocean, Oceanography Atlas for the Summer Period, Ed. by E. Tanis and L. Timokhov (Environmental Working Group, University of Colorado, Media Digital, 1998).

    Google Scholar 

  10. B. K. Arbic, S. T. Garner, R. W. Hallberg, and H. L. Simmons, “The accuracy of surface elevations in forward global barotropic and baroclinic tide models,” Deep-Sea Res. II 51 (25), 3069–3101 (2004).

    Article  Google Scholar 

  11. H. L. Simmons, R. W. Hallberg, and B. K. Arbic, “Internal wave generation in a global baroclinic tide model,” Deep-Sea Res. II 51 (25), 3043–3068 (2004).

    Article  Google Scholar 

  12. L. Padman and S. Erofeeva, “A barotropic inverse tidal model for the Arctic Ocean,” Geophys. Res. Lett. 31 (2), L02303 (2004). doi 10.1029/2003GL019003

    Article  Google Scholar 

  13. M. A. Janout and Y.-D. Lenn, “Semidiurnal tides on the Laptev Sea shelf with implications for shear and vertical mixing,” J. Phys. Oceanogr. 44 (1), 202–219 (2014).

    Article  Google Scholar 

  14. Y.-D. Lenn, T. P. Rippeth, C. P. Old, et al., “Intermittent intense turbulent mixing under ice in the Laptev Sea continental shelf,” J. Phys. Oceanogr. 41 (3), 531–547 (2011).

    Article  Google Scholar 

  15. A. Sundfjord, I. Fer, Y. Kasajima, and H. Svendsen, “Observations of turbulent mixing and hydrography in the marginal ice zone of the Barents Sea,” J. Geophys. Res. 112, C05008 (2007). doi 10.1029/2006JC003524

    Article  Google Scholar 

  16. A. Sirevaag and I. Fer, “Early spring oceanic heat fluxes and mixing observed from drift stations north of Svalbard,” J. Phys. Oceanogr. 39 (12), 3049–3069 (2009).

    Article  Google Scholar 

  17. J. N. Moum, D. R. Caldwell, J. D. Nash, and G. D. Gunderson, “Observations of boundary mixing over the continental slope,” J. Phys. Oceanogr. 32 (7), 2113–2130 (2002).

    Article  Google Scholar 

  18. T. D. Finnigan, D. S. Luther, and R. Lukas, “Observations of enhanced diapycnal mixing near the Hawaiian Ridge,” J. Phys. Oceanogr. 32 (10), 2988–3002 (2002).

    Article  Google Scholar 

  19. J. M. Klymak and M. C. Gregg, “Tidally generated turbulence over the Knight Inlet sill,” J. Phys. Oceanogr. 5 (10), 1135–1151 (2004).

    Article  Google Scholar 

  20. J. D. Nash, E. Kunze, J. M. Toole, and R. W. Schmitt, “Internal tide reflection and turbulent mixing on the continental slope,” J. Phys. Oceanogr. 34 (5), 1117–1134 (2004).

    Article  Google Scholar 

  21. B. A. Kagan and A. A. Timofeev, “Simulation of surface and internal semidiurnal tides in the Kara Sea,” Izv., Atmos. Ocean. Phys. 53 (2), 233–241 (2017). doi 10.7868/S0002351517020055

    Article  Google Scholar 

  22. I. E. Kozlov, V. N. Kudryavtsev, E. V. Zubkova, A. V. Zimin, and B. Chapron, “Characteristics of short-period internal waves in the Kara Sea inferred from satellite SAR data,” Izv., Atmos. Ocean. Phys. 51 (9), 1073–1087 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Kagan.

Additional information

Original Russian Text © B.A. Kagan, E.V. Sofina, A.A. Timofeev, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2018, Vol. 54, No. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagan, B.A., Sofina, E.V. & Timofeev, A.A. Critical Latitude in Tidal Dynamics Using the Kara Sea as an Example. Izv. Atmos. Ocean. Phys. 54, 206–212 (2018). https://doi.org/10.1134/S000143381802010X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143381802010X

Keywords

Navigation