Skip to main content
Log in

Ozone Temporal Variability in the Subarctic Region: Comparison of Satellite Measurements with Numerical Simulations

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Fourier and wavelet spectra of time series for the ozone column abundance in the atmospheric 0–25 and 25–60 km layers are analyzed from SBUV satellite observations and from numerical simulations based on the RSHU and EMAC models. The analysis uses datasets for three subarctic locations (St. Petersburg, Harestua, and Kiruna) for 2000–2014. The Fourier and wavelet spectra show periodicities in the range from ~10 days to ~10 years and from ~1 day to ~2 years, respectively. The comparison of the spectra shows overall agreement between the observational and modeled datasets. However, the analysis has revealed differences both between the measurements and the models and between the models themselves. The differences primarily concern the Rossby wave period region and the 11-year and semiannual periodicities. Possible reasons are given for the differences between the models and the measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Solomon, “Stratospheric ozone depletion: A review of concepts and history,” Rev. Geophys. 37 (3), 275–316 (1999).

    Article  Google Scholar 

  2. P. M. James, “A climatology of ozone mini-holes over the Northern Hemisphere,” Int. J. Climatol. 18, 1287–1303 (1998).

    Article  Google Scholar 

  3. R. Hommel, K.-U. Eichmann, J. Aschmann, et al., “Chemical ozone loss and ozone mini-hole event during the Arctic winter 2010/2011 as observed by SCIAMACHY and GOME-2,” Atmos. Chem. Phys. 14, 3247–3276 (2014).

    Article  Google Scholar 

  4. R. L. McKenzie, B. J. Connor, and G. E. Bodeker, “Increased summertime UV observed in New Zealand in response to ozone loss,” Science 285, 1709–1711 (1999).

    Article  Google Scholar 

  5. P. K. Bhartia, R. D. McPeters, L. E. Flynn, S. Taylor, N. A. Kramarova, S. Frith, B. Fisher, M. DeLand, “Solar backscatter UV (SBUV) total ozone and profile algorithm,” Atmos. Meas. Tech. 6, 2533–2548 (2013).

    Article  Google Scholar 

  6. V. Ya. Galin, S. P. Smyshlyaev, and E. M. Volodin, “Combined chemistry—climate model of the atmosphere,” Izv., Atmos. Ocean. Phys. 43 (4), 399–412 (2007).

    Article  Google Scholar 

  7. P. Jöckel, H. Tost, A. Pozzer, C. Brühl, et al., “The atmospheric chemistry general circulation model ECHAM5/MESSy1: Consistent simulation of ozone from the surface to the mesosphere,” Atmos. Chem. Phys. 6 (2006).

  8. D. P. Dee, S. M. Uppala, A. J. Simmons, et al., “The ERA-Interim reanalysis: configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  9. M. M. Rienecker, M. J. Suarez, R. Gelaro, et al., “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 24, 3624–3648 (2011).

    Article  Google Scholar 

  10. S. P. Smyshlyaev, Ya. A. Virolainen, M. A. Motsakov, A. V. Polyakov, Yu. M. Timofeev, and A. V. Poberovskii, “Interannual and seasonal variations in ozone in different atmospheric layers over St. Petersburg based on observational data and numerical modeling,” Izv., Atmos. Ocean. Phys. 53 (3), 301–315 (2017).

    Article  Google Scholar 

  11. Ya. A. Virolainen, Yu. M. Timofeev, A. V. Polyakov, D.V. Ionov, O. Kirner, A. V. Poberovskii, and Kh. Imkhasin, “Comparing data obtained from ground-based measurements of the total contents of O3, HNO3, HCl, and NO2 and from their numerical simulation,” Izv., Atmos. Ocean. Phys. 52 (1), 57–65 (2016).

    Article  Google Scholar 

  12. M. Righi, V. Eyring, K.-D. Gottschaldt, C. Klinger, F. Frank, P. Jockel, I. Cionni, “Quantitative evaluation of ozone and selected climate parameters in a set of EMAC simulations,” Geosci. Model Dev. 8, 733–768 (2015).

    Article  Google Scholar 

  13. A. Grinsted, J. C. Moore, and S. Jevrejeva, “Application of the cross wavelet transform and wavelet coherence to geophysical time series,” Nonlinear Processes Geophys. 11, 561–566 (2004).

    Article  Google Scholar 

  14. K. N. Visheratin, N. E. Kamenogradskii, F. V. Kashin, V. K. Semenov, V. P. Sinyakov, and L. I. Sorokina “Spectral—temporal structure of variations in the atmospheric total ozone in Central Eurasia,” Izv., Atmos. Ocean. Phys. 42 (2), 184–202 (2006).

    Article  Google Scholar 

  15. R. A. Madden, “Large-Scale, Free Rossby waves in the atmosphere—an update,” Tellus A 59 (5), 571–590 (2007).

    Article  Google Scholar 

  16. J. Nogués-Paegle, K. C. Mo, and K. P. Callahan, “Lower stratosphere waves during 1986–1989 southern springs,” Tellus B 44 (4), 390 (1992).

    Article  Google Scholar 

  17. S. M. I. Azeem, S. E. Palo, D. L. Wu, and L. Froidevaux, “Observations of the 2-day wave in UARS MLS temperature and ozone measurements,” Geophys. Res. Lett. 28, 3147 (2001).

    Article  Google Scholar 

  18. A. Belova, S. Kirkwood, and D. Murtagh, “Planetary waves in ozone and temperature in the Northern Hemisphere winters of 2002/2003 and early 2005,” Ann. Geophys. 27, 1189–1206 (2009).

    Article  Google Scholar 

  19. S. Studer, K. Hocke, and N. Kampfer, “Intraseasonal oscillations of stratospheric ozone above Switzerland,” J. Atmos. Sol.-Terr. Phys. 74, 189–198 (2012).

    Article  Google Scholar 

  20. T. D. Demissie, N. H. Kleinknecht, R. E. Hibbins, P. J. Espy, C. Straub, “Quasi-16-day oscillations observed in middle atmospheric ozone and temperature in Antarctica,” Ann. Geophys. 31, 1279 (2013).

    Article  Google Scholar 

  21. A. J. Prata, “Travelling waves in Nimbus-7 SBUV ozone measurements: Observations and theory,” Q. J. R. Meteorol. Soc. 116, 1091–1122 (1990).

    Article  Google Scholar 

  22. W. J. Randel, “Global normal-mode Rossby waves observed in stratosphere ozone data,” J. Atmos. Sci. 50, 406–420 (1993).

    Article  Google Scholar 

  23. G. M. Shved, S. I. Ermolenko, N. V. Karpova, S. Wendt, and Ch. Jacobi, “Detecting global atmospheric oscillations by seismic instruments,” Izv., Phys. Solid Earth 49 (2), 278–288 (2013).

    Article  Google Scholar 

  24. G. P. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere (Springer, Dordrecht, 2005).

    Google Scholar 

  25. D. G. Andrews, J. R. Holton, and C. B. Leovy, Middle Atmosphere Dynamics (Academic, Orlando, 1987).

    Google Scholar 

  26. S. Chandra and R. D. McPeters, “The solar cycle variation of ozone in the stratosphere inferred from Nimbus 7 and NOAA 11 satellites,” J. Geophys. Res. 99 (D10), 20665–20671 (1994).

    Article  Google Scholar 

  27. C. Zhang, “Madden-Julian oscillation,” Rev. Geophys. 43, RG2003 (2005). doi https://doi.org/10.1029/2004RG000158

    Google Scholar 

  28. M. Ern, P. Preusse, and M. Riese, “Driving of the SAO by gravity waves as observed from satellite,” Ann. Geophys. 33, 483–504 (2015).

    Article  Google Scholar 

  29. F. T. Huang, H. G. Mayr, C. A. Reber, J. M. Russell III, M. G. Mlynczak, and J. G. Mengel, “Ozone quasi-biennial oscillations (QBO), semiannual oscillations (SAO), and correlations with temperature in mesosphere, lower thermosphere, and stratosphere, based on measurements from SABER on TIMED and MLS on UARS,” J. Geophys. Res. 113, A01316 (2008). doi https://doi.org/10.1029/2007JA012634

    Google Scholar 

  30. L. Moreira, K. Hocke, F. Navas-Guzmán, E. Eckert, T. von Clarmann, and N. Kämpfer, “The natural oscillations in stratospheric ozone observed by the GROMOS microwave radiometer at the NDACC station Bern,” Atmos. Chem. Phys. 16, 10455–10467 (2016).

    Article  Google Scholar 

  31. M. P. Baldwin, L. J. Gray, T. J. Dunkerton, et al., “The quasi-biennial oscillation,” Rev. Geophys. 39, 179–229 (2001).

    Article  Google Scholar 

  32. N. N. Shefov, A. I. Semenov, and V. Yu. Khomich, Airglow as an Indicator of Upper Atmospheric Structure and Dynamics (Springer, Berlin, 2008; GEOS, Moscow; 2006).

    Google Scholar 

  33. M. Paluš and D. Novotná, “Phase-coherent oscillatory modes in solar and geomagnetic activity and climate variability,” J. Atmos. Sol.-Terr. Phys. 71, 923–930 (2009).

    Article  Google Scholar 

  34. D. Offermann, O. Goussev, Ch. Kalicinsky, R. Koppmann, K. Matthes, H. Schmidt, W. Steinbrecht, and J. Wintel, “A case study of multi-annual temperature oscillations in the atmosphere: Middle Europe,” J. Atmos. Sol.-Terr. Phys. 135, 1–11 (2015).

    Article  Google Scholar 

  35. A. M. Powell and J. Xu, “Possible solar forcing of interannual and decadal stratospheric planetary wave variability in the Northern Hemisphere: An observational study,” J. Atmos. Sol.-Terr. Phys. 73, 825–838 (2011).

    Article  Google Scholar 

  36. K. N. Visheratin, “Quasi-decadal variations in total ozone content, wind velocity, temperature, and geopotential height over the Arosa Station (Switzerland),” Izv., Atmos. Ocean. Phys. 52 (1), 66–73 (2016).

    Article  Google Scholar 

  37. W. J. Randel and F. Wu, Climatology of stratospheric ozone based on SBUV and SBUV/2 data: 1978–1994, Tech. Note NCAR/TN-412-STR (National Center for Atmospheric Research, Boulder, 1995).

  38. J. D. Neelin, D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, “ENSO theory,” J. Geophys. Res. 103 (C7), 14261–14290 (1998).

    Article  Google Scholar 

  39. T. H. A. Frame and L. J. Gray, “The 11-yr solar cycle in ERA-40 data: An update to 2008,” J. Clim. 23, 2213–2222 (2011).

    Article  Google Scholar 

  40. S. P. Smyshlyaev, V. Ya. Galin, P. A. Blakitnaya, and A. K. Lemishchenko, “Analysis of the sensitivity of the composition and temperature of the stratosphere to the variability of spectral solar radiation fluxes induced by the 11-year cycle of solar activity,” Izv., Atmos. Ocean. Phys. 52 (1), 16–32 (2016).

    Article  Google Scholar 

  41. H. G. Mayr and J. N. Lee, “Downward propagating equatorial annual oscillation and QBO generated multi-year oscillations in stratospheric NCEP reanalysis data,” J. Atmos. Sol.-Terr. Phys. 138–139, 1–8 (2016).

    Article  Google Scholar 

  42. A. C. Maycock, K. Matthes, S. Tegtmeier, R. Thiéblemont, and L. Hood, “The representation of solar cycle signals in stratospheric ozone. Part 1: A comparison of recently updated satellite observations,” Atmos. Chem. Phys. 16, 10021–10043 (2016).

    Article  Google Scholar 

  43. J. P. McCormac and L. L. Hood, “Apparent solar cycle variations of upper stratospheric ozone and temperature: Latitude and seasonal dependences,” J. Geophys. Res. 101 (D15), 20933–20944 (1996).

    Article  Google Scholar 

  44. K. N. Visheratin, “Spatio—temporal variability of phase of total ozone quasidecadal variations,” Issled. Zemli Kosmosa, No. 2, 88–95 (2017).

    Google Scholar 

  45. C. Bolduc, M. S. Bourqui, and P. Charbonneau, “A comparison of stratospheric photochemical response to different reconstructions of solar ultraviolet radiative variability,” J. Atmos. Sol.-Terr. Phys. 132, 22–32 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Shved.

Additional information

Original Russian Text © G.M. Shved, Ya.A. Virolainen, Yu.M. Timofeyev, S.I. Ermolenko, S.P. Smyshlyaev, M.A. Motsakov, O. Kirner, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2018, Vol. 54, No. 1, pp. 36–44.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shved, G.M., Virolainen, Y.A., Timofeyev, Y.M. et al. Ozone Temporal Variability in the Subarctic Region: Comparison of Satellite Measurements with Numerical Simulations. Izv. Atmos. Ocean. Phys. 54, 32–38 (2018). https://doi.org/10.1134/S0001433817060111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433817060111

Keywords

Navigation