Skip to main content
Log in

Influence of internal gravity waves on meteorological fields and gas constituents near Moscow and Beijing

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The influence of internal gravity waves on the spatial coherence and temporal variability of the atmospheric pressure, wind velocity, and gas constituents near Moscow and Beijing is studied in the mesoscale range of periods: from a few tens of seconds to several hours. The results of simultaneous measurements of variations in the atmospheric pressure (using a network of spaced microbarographs), wind velocity at different heights of the atmospheric boundary layer, and gas constituents are given for each city. The wave structures are filtered using a coherence analysis of the atmospheric pressure variations at different measurement sites. The dominant periods and the coherences, phase speeds, and horizontal scales of variations corresponding to these periods are estimated. The general mechanism of the influence of wave structures on meteorological fields and gas constituents is discussed, which is independent of the measurement site and the specificity of meteorological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. E. Gossard and W.H. Hooke, Waves in the Atmosphere (Elsevier, Amsterdam, 1975).

    Google Scholar 

  2. A. Gill, Atmosphere–Ocean Dynamics (Academic, New York, 1982; Mir, Moscow, 1986), Vol. 2.

    Google Scholar 

  3. D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41 (1), 1003 (2003). doi 10.1029/2001RG000106

    Article  Google Scholar 

  4. J. T. Backmeister, S. D. Eckermann, P. N. Newman, L. Lait, K. R. Chan, M. Loewenstein, M. H. Profitt, and B. L. Gary, “Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft,” J. Geophys. Res. 101 (D5), 9441–9470 (1996).

    Article  Google Scholar 

  5. J. Sun, C. J. Nappo, L. Mahrt, et al., “Review of wave–turbulence interactions in the stable atmospheric boundary layer,” Rev. Geophys. 53 (2015). doi 10.1002/2015RG000487

    Google Scholar 

  6. O. G. Khutorova and G. M. Teptin, “An investigation of mesoscale wave processes in the surface layer using synchronous measurements of atmospheric parameters and admixtures,” Izv., Atmos. Ocean. Phys. 45 (5), 549–556 (2009).

    Article  Google Scholar 

  7. J. Seabrook and J. Whiteway, “Influence of mountains on Arctic tropospheric ozone,” J. Geophys. Res. 121 (4), 1935–1942 (2016). doi 10.1002/2015JD024114

    Google Scholar 

  8. T. Peacock and G. Haller, “Lagrangian coherent structures,” Phys. Today 41 (2), 41–49 (2013).

    Article  Google Scholar 

  9. D. S. Eckermann, D. E. Gibson-Wilde, and J. T. Backmeister, “Gravity wave perturbations of minor constituents: A parcel advection methodology,” J. Atmos. Sci. 55 (24), 3521–3539 (1998).

    Article  Google Scholar 

  10. R. E. Newell, Z.-X. Wu, Y. Zhu, et al., “Vertical finescale atmospheric structure measured from NASA DC-8 during PEM-West,” J. Geophys. Res. 101 (D1), 1943–1960 (1996).

    Article  Google Scholar 

  11. S. J. Caughey and C. J. Readings, “An observation of waves and turbulence in the Earth’s boundary layer,” Boundary-Layer Meteorol. 9, 279–296 (1975).

    Article  Google Scholar 

  12. Atmospheric Turbulence and Air Pollution Modeling, Ed. by F. T. M. Nieuwstadt and H. Van Dop (D. Reidel, Dordrecht, 1981).

  13. W. Yuan, J. Xu, Y. Wu, J. Bian, and H. Chen, “Vertical wavenumber spectra of atmospheric ozone measured from ozonesonde observations,” Adv. Space Res. 43 (9), 1364–1371 (2009).

    Article  Google Scholar 

  14. A. Serafimovich, C. Nappo, and T. Foken, “Impact of gravity waves on the turbulent exchange above a forest site,” in 9th Symposium on Boundary Layers and Turbulence (Potsdam, 2010). http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:245816.

    Google Scholar 

  15. A. I. Grachev, S. V. Zagoruiko, A. K. Matveev, and M. I. Mordukhovich, “Some results of recording of atmospheric infrasound waves,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 14 (5), 474–483 (1978).

    Google Scholar 

  16. M. Tepper, The Application of the Hydraulic Analogy to Certain Atmospheric Flow Problems, US Weather Bureau Res. Paper No. 35 (Weather Bureau, Washington, 1952).

    Google Scholar 

  17. R. R. Hodges Jr., “Generation of turbulence in the upper atmosphere by internal gravity waves,” J. Geophys. Res. 72 (13), 3455–3458 (1967).

    Article  Google Scholar 

  18. N. V. Karpova, L. N. Petrova, and G. M. Shved, “Atmospheric and earth-surface oscillations with steady frequencies in the 0.7–1.5 and 2.5–5.0 h period ranges,” Izv., Atmos. Ocean. Phys. 40 (1), 10–20 (2004).

    Google Scholar 

  19. S. V. Garmash, E. M. Lin’kov, L. N. Petrova, and G. M. Shved, “Excitation of atmospheric oscillations by seismogravitational vibrations of the Earth,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 25 (12), 1290–1299 (1989).

    Google Scholar 

  20. E. M. Lin’kov, L. N. Petrova, and D. D. Zuroshvili, “Seismogravitational vibrations of the Earth and related atmospheric disturbances,” Dokl. Akad. Nauk SSSR 306 (2), 314–317 (1989).

    Google Scholar 

  21. G. M. Shved, L. N. Petrova, and O. S. Polyakova, “Penetration of the Earth’s free oscillations into the atmosphere,” Ann. Geophys. 18, 566–572 (2000).

    Article  Google Scholar 

  22. I. Chunchuzov, S. Kulichkov, V. Perepelkin, A. Ziemann, K. Arnold, and A. Kniffka, “Mesoscale variations in acoustic signals induced by atmospheric gravity waves,” J. Acoust. Soc. Am. 125 (2), 651–664 (2009).

    Article  Google Scholar 

  23. I. P. Chunchuzov, “On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere,” Ann. Geophys. 27, 4105–412 (2009).

    Article  Google Scholar 

  24. C. O. Hines, “The saturation of gravity waves in the middle atmosphere. Part II: Development of Dopplerspread theory,” J. Atmos. Sci. 48, 1360–1379 (1991).

    Google Scholar 

  25. R. S. Lindzen and R. Goody, “Radiative and photochemical processes in mesospheric dynamics. Part 1. Models for radiative and photochemical processes,” J. Atmos. Sci. 22, 341–348 (1965).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Chunchuzov.

Additional information

Original Russian Text © I.P. Chunchuzov, V.G. Perepelkin, S.N. Kulichkov, G.I. Gorchakov, M.A. Kallistratova, A.V. Dzhola, J. Lyu, P. Teng, Y. Yang, W. Lin, Q. Li, Y. Sun, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2017, Vol. 53, No. 5, pp. 597–611.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chunchuzov, I.P., Perepelkin, V.G., Kulichkov, S.N. et al. Influence of internal gravity waves on meteorological fields and gas constituents near Moscow and Beijing. Izv. Atmos. Ocean. Phys. 53, 524–538 (2017). https://doi.org/10.1134/S0001433817050048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433817050048

Keywords

Navigation