Skip to main content
Log in

Link between anomalously cold winters in Russia and sea-ice decline in the Barents Sea

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

There were several anomalously cold winter weather regimes in Russia in the early 21st century. These regimes were usually associated with a blocking anticyclone south of the Barents Sea. Numerical simulations with an atmospheric general circulation model (AGCM) using prescribed sea-ice concentration (SIC) data for different periods during the last 50 years showed that a rapid sea-ice area decline in the Barents Sea in the last decade could bring about the formation of such a blocking anticyclone and cooling over northern Eurasia. The SIC reduction in the former period, from the second half of the 1960s to the first half of the 1990s, results in a weaker response of opposite sign. This suggests a nonlinear atmospheric circulation response to the SIC reduction in the Barents Sea, which has been previously found in the idealized AGCM simulations. An impact of the Barents Sea SIC reduction on the North Atlantic Oscillation (NAO), in particular, on the formation of the anomalously low NAO index, is found. The results indicate an important role that the Barents Sea, a region with the largest variability of the ocean–atmosphere heat exchange in the Arctic in wintertime, plays in generating anomalous weather regimes in Russia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hansen, R. Ruedy, M. Sato, and K. Lo, “Global surface temperature change,” Rev. Geophys. 48, RG4004 (2010). doi 10.1029/2010RG000345

    Article  Google Scholar 

  2. V. V. Ivanov, V. A. Alekseev, T. A. Alekseeva, et al., “Arctic ice cover becomes seasonal,” Issled. Zemli Kosmosa, No. 4, 50–65 (2013).

    Google Scholar 

  3. V. A. Semenov, I. I. Mokhov, and A. B. Polonskii, “Modeling of impact of natural long-period variability in the North Atlantic upon formation of climate anomalies,” Morsk. Gidrofiz. Zh., No. 4, 14–27 (2014).

    Google Scholar 

  4. M. Croci-Maspoli and H. C. Davies, “Key dynamical features of the 2005/06 European winter,” Mon. Weather Rev. 137, 664–678 (2009).

    Article  Google Scholar 

  5. T. Jung, T. N. Palmer, M. J. Rodwell, and S. Serrar, “Understanding the anomalously cold European winter 2005/06 using relaxation experiments,” Mon. Weather Rev. 138, 3157–3174 (2010).

    Article  Google Scholar 

  6. M. Honda, J. Inoue, and S. Yamane, “Influence of low Arctic sea-ice minima on wintertime Eurasian coldness,” Geophys. Res. Lett. 36, L08707 (2009). doi 10.1029/2008GL037079

    Article  Google Scholar 

  7. V. Petoukhov and V. A. Semenov, “A link between reduced Barents–Kara Sea ice and cold winter extremes over northern continents,” J. Geophys. Res. 115, D21111 (2010). doi 10.1029/2009jd013568

    Article  Google Scholar 

  8. H. van Loon and J. Rogers, “The seesaw in winter temperature between Greenland and Northern Europe. Part 1: General description,” Mon. Weather Rev. 106, 296–310 (1978).

    Article  Google Scholar 

  9. M. E. Schlesinger and N. Ramankutty, “An oscillation in the global climate system of period 65–70 years,” Nature 367, 723–726 (1994).

    Article  Google Scholar 

  10. S. Häkkinen, P. B. Rhines, and D. L. Worthen, “Atmospheric blocking and Atlantic multidecadal ocean variability,” Science 334, 655–659 (2011).

    Article  Google Scholar 

  11. Y. Peings and G. Magnusdottir, “Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean,” Environ. Res. Lett. 9, 034018 (2014). doi 10.1088/1748-9326/9/3/034018

    Article  Google Scholar 

  12. A. R. Lupo, R. J. Oglesby, and I. I. Mokhov, “Climatological features of blocking anticyclones: a study of Northern Hemisphere CCM1 model blocking events in present-day and double CO2 concentration atmospheres,” Clim. Dyn. 13, 181–195 (1997).

    Article  Google Scholar 

  13. I. I. Mokhov, “Action as an integral characteristic of climatic structures: Estimates for atmospheric blockings,” Dokl. Earth Sci. 409A (6), 925–928 (2006).

    Article  Google Scholar 

  14. J. E. Overland and M. Wang, “Large-scale atmospheric circulation changes are associated with the recent loss of Arctic Sea ice,” Tellus 62, 1–9 (2010).

    Article  Google Scholar 

  15. S. Hopsch, J. Cohen, and K. Dethloff, “Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter,” Tellus 64, 18624 (2012). doi 10.3402/tellusa.v64i0.18624

    Article  Google Scholar 

  16. S. D. Outten and I. Esau, “A link between Arctic Sea ice and recent cooling trends over Eurasia,” Clim. Change 110, 1069–1075 (2012).

    Article  Google Scholar 

  17. G. F. Herman and W. T. Johnson, “The sensitivity of the general circulation to Arctic sea ice boundaries: A numerical experiment,” Mon. Weather Rev. 106, 1649–1663 (1978).

    Article  Google Scholar 

  18. V. M. Kattsov, V. P. Meleshko, A. P. Sokolov, et al., “Sea-ice effect on the thermal regime and atmospheric circulation over the Northern Hemisphere in winter,” Meteorol. Gidrol., No. 12, 5–24 (1992).

    Google Scholar 

  19. L. Bengtsson, V. A. Semenov, and O. M. Johannessen, “The early twentieth-century warming in the Arctic— A possible mechanism,” J. Clim. 17, 4045–4057.

  20. C. Deser, G. Magnusdottir, R. Saravanan, and A. Phillips, “The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part 2: Direct and indirect components of the response,” J. Clim. 17, 877–889 (2004).

    Article  Google Scholar 

  21. M. A. Alexander, U. S. Bhatt, J. E. Walsh, et al., “The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter,” J. Clim. 17, 890–905 (2004).

    Article  Google Scholar 

  22. V. A. Semenov, I. I. Mokhov, and M. Latif, “Influence of the ocean surface temperature and sea ice concentration on regional climate changes in Eurasia in recent decades,” Izv., Atmos. Ocean. Phys. 48 (4), 355–372 (2012).

    Article  Google Scholar 

  23. J. A. Screen, I. Simmonds, C. Deser, and R. Tomas, “The atmospheric response to three decades of observed Arctic sea ice loss,” J. Clim. 26, 1230–1248 (2013).

    Article  Google Scholar 

  24. L. H. Smedsrud, I. N. Esau, R. B. Ingvaldsen, et al., “The role of the Barents Sea in the Arctic climate system,” Rev. Geophys. 51, 415–449 (2013). doi 10.1002/rog.20017

    Article  Google Scholar 

  25. E. Roeckner, G. Bäuml, L. Bonaventura, et al., The Atmospheric General Circulation Model ECHAM 5. Part I: Model Description (Max Planck Inst. Meteorol., Hamburg, 2003).

    Google Scholar 

  26. N. A. Rayner, D. E. Parker, E. B. Horton, et al., “Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century,” J. Geophys. Res. 108 (D14), 4407 (2003). doi 10.1029/2002JD002670

    Article  Google Scholar 

  27. E. Kalnay, M. Kanamitsu, R. Kistler, et al., “The NCEP/NCAR 40-year reanalysis project,” Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  28. A. V. Baidin and V. P. Meleshko, “Response of the atmosphere at high and middle latitudes to the reduction of sea ice area and the rise of sea surface temperature,” Russ. Meteorol. Hydrol., 39 (6), 361–370 (2014).

    Article  Google Scholar 

  29. V. A. Semenov, M. Latif, J. H. Jungclaus, and W. Park, “Is the observed NAO variability during the instrumental record unusual?,” Geophys. Res. Lett. 35 (2008). doi 10.1029/2008gl033273

    Google Scholar 

  30. I. I. Mokhov, A. V. Timazhev, and A. R. Lupo, “Changes in atmospheric blocking characteristics within Euro–Atlantic region and Northern Hemisphere as a whole in the 21st century from model simulations using RCP anthropogenic scenarios,” Global Planet. Change 122, 265–270 (2014).

    Article  Google Scholar 

  31. I. I. Mokhov and A. V. Timazhev, “Model assessment of possible changes of atmospheric blockings in the Northern Hemisphere under RCP scenarios of anthropogenic forcings,” Dokl. Earth Sci. 460 (1), 63–67 (2015).

    Article  Google Scholar 

  32. V. A. Semenov, “Influence of oceanic inflow to the Barents Sea on climate variability in the Arctic region,” Dokl. Earth Sci. 418 (1), 91–94 (2008).

    Article  Google Scholar 

  33. I. I. Mokhov, “Contemporary climate changes in the Arctic,” Herald Russ. Acad. Sci. 85 (3), 265–271 (2015).

    Article  Google Scholar 

  34. V. A. Semenov and M. Latif, “The early twentieth century warming and winter Arctic sea ice,” Cryosphere 6, 1231–1237 (2012).

    Article  Google Scholar 

  35. V. A. Semenov, W. Park, and M. Latif, “Barents Sea inflow shutdown: A new mechanism for rapid climate changes,” Geophys. Res. Lett. 36, L14709 (2009)). doi 10.1029/2009gl038911

    Article  Google Scholar 

  36. V. A. Semenov, “Structure of temperature variability in the high latitudes of the Northern Hemisphere,” Izv., Atmos. Ocean. Phys. 43 (6), 687–695 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Semenov.

Additional information

Original Russian Text © V.A. Semenov, 2016, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2016, Vol. 52, No. 3, pp. 257–266.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, V.A. Link between anomalously cold winters in Russia and sea-ice decline in the Barents Sea. Izv. Atmos. Ocean. Phys. 52, 225–233 (2016). https://doi.org/10.1134/S0001433816030105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433816030105

Keywords

Navigation