Skip to main content
Log in

Sources of and variations in tropospheric CO in Central Siberia: Numerical experiments and observations at the Zotino Tall Tower Observatory

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Contributions of climatically significant natural and anthropogenic emission sources in northern Eurasia to seasonal carbon monoxide (CO) variations observed at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia in 2007–2011 have quantitatively been estimated using the GEOS-Chem chemical transport model. It is shown that the formation of a stable continental pollution plume from sources in Western Europe, European Russia and southern Siberia during winter plays an important role in the regional balance of surface CO and allows one to explain 55–80% of the amplitude of the CO annual cycle observed at the ZOTTO station (~70–90 ppbv). During the warm period, the effect of the anthropogenic factor is weakly pronounced, and the background concentration of CO is regulated, first and foremost, by the oxidation of biogenic volatile organic compounds and fire activity in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Jacob, Introduction to Atmospheric Chemistry (Princeton Univ. Press, Princeton, 1999).

    Google Scholar 

  2. G. Müller, WMO Global Atmosphere Watch (GAW). Strategic Plan: 2008–2015, World Meteorological Organization GAW Report no. 172, 2008.

    Google Scholar 

  3. E. A. Kozlova, A. C. Manning, Y. Kisilyakhov, et al., “Methodology and calibration for continuous measurements of biogeochemical trace gas and O2 concentrations from a 300-m tall tower in central Siberia,” Atmos. Meas. Tech. Discuss., No. 1, 281–330 (2009).

    Article  Google Scholar 

  4. M. Heimann, E. D. Schulze, J. Winderlich, et al., “The Zotino Tall Tower Observatory (ZOTTO): Quantifying large scale biogeochemical changes in central Siberia,” Nova Acta Leopold. 117 (399), 51–64 (2014).

    Google Scholar 

  5. P. J. Crutzen, G. L. Mark, and U. Poschl, “On the background photochemistry of tropospheric ozone,” Tellus, Ser. A-B 51, 123–146 (1999).

    Google Scholar 

  6. A. V. Vasileva, K. B. Moiseenko, J.-C. Mayer, et al., “Assessment of the regional atmospheric impact of wildfire emissions based on CO observations at the ZOTTO tall tower station in central Siberia,” J. Geophys. Res. 116, D07301 (2011). doi 10.1029/2010JD014571

    Google Scholar 

  7. A. V. Vivchar, K. B. Moiseenko, R. A. Shumskii, and A. I. Skorokhod, “Identifying anthropogenic sources of nitrogen oxide emissions from calculations of Lagrangian trajectories and the observational data from a tall tower in Siberia during the spring–summer period of 2007,” Izv., Atmos. Ocean. Phys. 45 (3), 302–313 (2009).

    Article  Google Scholar 

  8. H. Hakola, “Biogenic volatile organic compound (VOC) emissions from boreal deciduous trees and their atmospheric chemistry,” Finn. Meteorol. Inst. Contrib., No. 34 (2001).

  9. T. Holloway, H. Levy, and P. Kasibhatla, “Global distribution of carbon monoxide,” J. Geophys. Res. 105 (D10), 12123–12147 (2000).

    Article  Google Scholar 

  10. X. Chi, J. Winderlich, J.-C. Mayer, et al., “Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga,” Atmos. Chem. Phys. 13, 12271–12298 (2013).

    Article  Google Scholar 

  11. A. J. Soja, W. R. Cofer, H. H. Shugart, et al., “Estimating fire emissions and disparities in boreal Siberia (1998–2002),” J. Geophys. Res. 109, D14S06 (2004). doi 10.1029/2004JD004570

    Article  Google Scholar 

  12. A. I. Sukhinin, N. H. F. French, and E. S. Kasischke, et al., “AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies,” Remote Sens. Environ. 93, 546–564 (2004).

    Article  Google Scholar 

  13. I. T. Bertschi and D. A. Jaffe, “Long-range transport of ozone, carbon monoxide, and aerosols to the NE pacific troposphere during the summer of 2003: Observations of smoke plumes from Asian boreal fires,” J. Geophys. Res. 110, D05303 (2005). doi 10.1029/2004JD005135

    Google Scholar 

  14. N. Spichtinger, R. Damoah, S. Eckhardt, et al., “Boreal forest fires in 1997 and 1998: A seasonal comparison using transport model simulations and measurement data,” Atmos. Chem. Phys. 4, 1857–1868 (2004).

    Article  Google Scholar 

  15. M. Val Martin, R. A. Kahn, J. A. Logan, et al., “Spacebased observational constraints for 1-D fire smoke plume-rise models,” J. Geophys. Res. 117, D22204 (2012). doi 10.1029/2012JD018370

    Google Scholar 

  16. A. Stohl, S. Eckhardt, C. Forster, et al., “On the pathways and timescales of intercontinental air pollution transport,” J. Geophys. Res. 107 (4684) (2002). doi 10.1029/2001JD001396

    Google Scholar 

  17. A. V. Vivchar, K. B. Moiseenko, and N. V. Pankratova, “Estimates of carbon monoxide emissions from wildfires in Northern Eurasia for air quality assessment and climate modeling,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 46 (3), 281–293 (2010).

    Google Scholar 

  18. C. Gerbig, S. Schmitgen, D. Kley, et al., “An improved fast-response vacuum-UV resonance fluorescence CO instrument,” J. Geophys. Res. 104, D11699 (1999).

    Google Scholar 

  19. J.-C. Mayer, W. Birmili, M. Heimann, et al., “Longterm measurements of carbon monoxide and aerosols at the ZOTTO tall tower, Siberia,” EOS, Trans. Am. Geophys. Union 90 (52) (2001).

    Google Scholar 

  20. I. Bey, D. J. Jacob, R. M. Yantosca, et al., “Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation,” J. Geophys. Res. 106, 23073–23096 (2001).

    Article  Google Scholar 

  21. J. G. J. Olivier, A. F. Bouwman, C. W. M. van der Maas, and J. J. M. Berdowski, “Emission database for global atmospheric research (EDGAR),” Stud. Environ. Sci. 65, 651–659 (1995).

    Article  Google Scholar 

  22. A. Guenther, T. Karl, P. Harley, et al., “Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature),” Atmos. Chem. Phys. 6 (11), 3181–3210 (2006).

    Article  Google Scholar 

  23. R. C. Hudman, L. T. Murray, D. J. Jacob, et al., “Biogenic vs. anthropogenic sources of CO over the United States,” Geophys. Res. Lett. 35, L04801, 1–5 (2008).

    Google Scholar 

  24. D. V. Spracklen, B. Bonn, and K. S. Carslaw, “Boreal forests, aerosols and the impacts on clouds and climate,” Philos. Trans. R. Soc., A 366 (1885), 4613–4626 (2008).

    Article  Google Scholar 

  25. G. R. Van der Werf, J. T. Randerson, L. Giglio, et al., “Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009),” Atmos. Chem. Phys. 10, 11707–11735 (2010).

    Article  Google Scholar 

  26. C. S. Potter and S. A. Klooster, “Global model estimates of carbon and nitrogen storage in litter and soil pools: Response to change in vegetation quality and biomass allocation,” Tellus, Ser. B 49 (1), 1–17 (1997).

    Article  Google Scholar 

  27. Y. Rastigejev, R. Park, M. P. Brenner, and D. J. Jacob, “Resolving intercontinental pollution plumes in global models of atmospheric transport,” J. Geophys. Res. 115, D02302 (2010). doi 10.1029/2009JD012568

    Google Scholar 

  28. S. R. Hanna, “Confidence limits for air quality model evaluations, as estimated by bootstrap and jackknife resampling methods,” Atmos. Environ. 23 (6), 1385–1398 (1989).

    Article  Google Scholar 

  29. N. F. Elansky, “Spatial and temporal variations of trace gases surface concentrations over Russia from TROICA observations,” Proceedings of the International Symposium on Atmospheric Physics and Chemistry, Ed. by H. Wang and G. S. Golitsyn (Beijin, 2007), pp. 49–56.

    Google Scholar 

  30. S. Sillman, “The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments,” Atmos. Environ. 33 (12), 1821–1845 (1999).

    Article  Google Scholar 

  31. T. Pierce, C. Geron, L. Bender, et al., “Influence of increased isoprene emissions on regional ozone modeling,” J. Geophys. Res. 103, 25611–25629 (1998).

    Article  Google Scholar 

  32. W. L. Chameides, R. W. Lindsay, J. Richardson, and C. S. Kiang, “The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study,” Science 241, 1473–1475 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Shtabkin.

Additional information

Original Russian Text © Yu.A. Shtabkin, K.B. Moiseenko, A.I. Skorokhod, A.V. Vasileva, M. Heimann, 2016, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2016, Vol. 52, No. 1, pp. 51–63.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtabkin, Y.A., Moiseenko, K.B., Skorokhod, A.I. et al. Sources of and variations in tropospheric CO in Central Siberia: Numerical experiments and observations at the Zotino Tall Tower Observatory. Izv. Atmos. Ocean. Phys. 52, 45–56 (2016). https://doi.org/10.1134/S0001433816010096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433816010096

Keywords

Navigation