Skip to main content
Log in

Reconstructions of ground surface heat flux variations in the urals from geothermal and meteorological data

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Ground surface heat flux variations over the last 30000, 1000, and 150 years in the Urals were first estimated on the basis of geothermal reconstructions of ground surface temperature histories and meteorological data. The heat flux histories obtained and the factors affecting climate—mean annual insolation, global solar radiation, atmospheric CO2 concentration, and volcanic activity—were simultaneously analyzed. On the scale of glacial-interglacial cycles, variations in the flux of heat almost completely coincided with those in insolation in the Northern Hemisphere, and variations in the content of CO2 occurred 2000–3000 years later synchronously with the response of temperature. In the last 1000 years, heat flux variations have been determined mainly by the parameters of solar radiation; however, the influence of other factors, such as atmospheric CO2 content and volcanic activity, has also been noticeable. In the last 150 years, variations in the flux of heat have occurred in antiphase with those in the flux of solar radiation, and an increase in the atmospheric content of CO2 has mainly contributed to the observed warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bard, E., Raisbeck, G., Yiou, F., and Jouzel, J., Solar irradiance during the last 1200 years based on cosmogenic nuclides, Tellus B, 2000, vol. 52, no. 3, pp. 985–992.

    Article  Google Scholar 

  • Barnola, J.-M., Raynaud, D., Lorius, C., and Barkov, N.I., Historical CO2 record from the Vostok ice core, in Trends: A Compendium of Data on Global Change, Oak Ridge, Tennessee: CDIAC, Oak Ridge National Laboratory, 2003.

    Google Scholar 

  • Beltrami, H., Wang, J., and Bras, R.L., Energy balance at the Earth’s surface: Heat flux history in Eastern Canada, Geophys. Res. Lett., 2000, vol. 27, no. 20, pp. 3385–3388.

    Article  Google Scholar 

  • Beltrami, H., Surface heat flux histories from inversion of geothermal data: Energy balance at the Earth’s surface, J. Geophys. Res.: Solid Earth, 2001, vol. 106, no. B10, pp. 21979–21993.

    Article  Google Scholar 

  • Beltrami, H., Climate from borehole data: Energy fluxes and temperatures since 1500, Geophys. Res. Lett., 2002, vol. 29, no. 23, pp. 26-1–26-4.

    Article  Google Scholar 

  • Beltrami, H., Smerdon, J.E., Pollack, H.N., and Huang, S., Continental heat gain in the global climate system, Geophys. Res. Lett., 2002, vol. 29, no. 8, pp. 8-1–8-3.

    Article  Google Scholar 

  • Beltrami, H., Bourlon, E., Kellman, L., and González-Rouco, J.F., Spatial patterns of ground heat gain in the Northern Hemisphere, Geophys. Res. Lett., 2006, vol. 33, no. 6, pp. L06717.

    Article  Google Scholar 

  • Bennett, W.B., Wang, J., and Bras, R.L., Estimation of global ground heat flux, J. Hydrometeorol., 2008, vol. 9, no. 4, pp. 744–759.

    Article  Google Scholar 

  • Berger, A. and Loutre, M.F., Insolation values for the climate of the last 10 million years, Quat. Sci. Rev., 1991, vol. 10, no. 4, pp. 297–317.

    Article  Google Scholar 

  • Bertrand, C., Loutre, M., Crucifix, M., and Berger, A., Climate of the last millennium: A sensitivity study, Tellus A, 2002, vol. 54, no. 3, pp. 221–244.

    Article  Google Scholar 

  • Blunier, T., Chappellaz, J., Schwander, J., Dällenbach, A., Stauffer, B., Stocker, T.F., Raynaud, D., Jousel, J., Clausen, H.B., Hammer, C.U., and Johnsen, S.J., Asynchrony of Antarctic and Greenland climate change during the last glacial period, Nature, 1998, vol. 394, pp. 739–743.

    Article  Google Scholar 

  • Bol’shakov, V.A. and Kapitsa, A.P., Lessons of the development of the orbital theory of paleoclimate, Herald Russ. Acad. Sci., 2011, vol. 81, no. 4, pp. 387–396.

    Article  Google Scholar 

  • Braun, H., Christl, M., Rahmstorf, S., Ganopolski, A., Mangini, A., Kubatzki, C., Roth, K., and Kromer, B., Possible solar origin of the 1470-year glacial climate cycle demonstrated in a coupled model, Nature, 2005, vol. 438, no. 7065, pp. 208–211.

    Article  Google Scholar 

  • Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids Oxford: Clarendon, 1959.

    Google Scholar 

  • Chapman, D.S., Bartlett, M.G., and Harris, R.N., Comment on “Ground vs surface air temperature trends: Implications for borehole surface temperature reconstructions” by M.E. Mann and G. Schidt, Geophys. Res. Lett., 2004, vol. 31, p. L07205.

    Article  Google Scholar 

  • Chung, S.H. and Seinfeld, J.H., Climate response of direct radiative forcing of anthropogenic black carbon, J. Geophys. Res.: Atmos., 2005, vol. 110, no. D11.

    Google Scholar 

  • Crowley, T.J., Causes of climate change over the past 1000 years, Science, 2000, vol. 289, no. 5477, pp. 270–277.

    Article  Google Scholar 

  • Crowley, T.J. and Unterman, M.B., Technical details concerning development of a 1200-yr proxy index for global volcanism, Earth Syst. Sci. Data Discuss., 2012, vol. 5, no. 1, pp. 1–28.

    Article  Google Scholar 

  • Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G.D., Johnsen, S.J., Hansen, A.W., and Balling, N., Past temperatures directly from the Greenland Ice Sheet, Science, 1998, vol. 282, pp. 268–271.

    Article  Google Scholar 

  • Demezhko, D.Yu. and Shchapov, V.A., 80000 years ground surface temperature history inferred from the temperature-depth log measured in the superdeep hole SG-4 (the Urals, Russia), Global Planet. Change, 2001, vol. 29, nos. 1–2, pp. 219–230.

    Article  Google Scholar 

  • Demezhko, D.Yu., Geotermicheskii metod rekonstruktsii paleoklimata (na primere Urala) (Geothermal Method for Paleoclimate Reconstruction (Examples from the Urals, Russia)), Ekaterinburg: UrO RAN, 2001.

    Google Scholar 

  • Demezhko, D.Yu., Utkin, V.I., Shchapov, V.A., and Golovanova, I.V., Variations in the Earth’s surface temperature in the Urals during the last millennium based on borehole temperature data, Dokl. Earth Sci., 2005, vol. 403, no. 5, pp. 764–766.

    Google Scholar 

  • Demezhko, D.Yu. and Golovanova, I.V., Climatic changes in the Urals over the past millennium: An analysis of geothermal and meteorological data, Clim. Past, 2007, vol. 3, pp. 237–242.

    Article  Google Scholar 

  • Demezhko, D.Yu. and Solomina, O.N., Ground surface temperature variations on Kunashir Island in the last 400 years inferred from borehole temperature data and tree-ring records, Dokl. Earth Sci., 2009, vol. 426, no. 4, pp. 628–631.

    Article  Google Scholar 

  • Douglass, D.H. and Knox, R.S., Ocean heat content and Earth’s radiation imbalance. II. Relation to climate shifts, Phys. Lett. A, 2012, vol. 376, no. 14, pp. 1226–1229.

    Article  Google Scholar 

  • Etheridge, D.M., Steele, L.P., Langenfelds, R.L., Francey, R.J., Barnola, J.-M., and Morgan, V.I., Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores, in Trends: A Compendium of Data on Global Change, Oak Ridge, Tennessee: CDIAC, Oak Ridge National Laboratory, 1998.

    Google Scholar 

  • Geiger, R., The Climate Near the Ground, Cambridge: Mass.: Harvard Univ. Press, 1965.

    Google Scholar 

  • Golovanova, I.V., Puchkov, V.N., Sal’manova, R.Yu., and Demezhko, D.Yu., A new version of the heat flow map of the Urals with paleoclimatic corrections, Dokl. Earth Sci., 2008, vol. 422, no. 1, pp. 1153–1156.

    Article  Google Scholar 

  • Gonzáles-Rouco, J.F., von Storch, H., and Zorita, E., Deep soil temperature as proxy for surface air temperature in coupled model simulation of the last thousand years, Geophys. Res. Lett., 2003, vol. 30, no. 21, p. 2116.

    Article  Google Scholar 

  • Gonzáles-Rouco, J.F., Beltrami, H., Zorita, E., and von Storch, H., Simulation and inversion of borehole temperature profiles in surrogate climates: Spatial distribution and surface coupling, Geophys. Res. Lett., 2006, vol. 33, p. L01703.

    Google Scholar 

  • Goosse, H. and Renssen, H., Exciting natural modes of variability by solar and volcanic forcing: Idealized and realistic experiments, Clim. Dyn., 2004, vol. 23, no. 2, pp. 153–163.

    Article  Google Scholar 

  • Hansen, J. and Lebedeff, S., Global trends of measured air surface temperature, J. Geophys. Res., 1987, vol. 92, no. 13, pp. 345–372.

    Google Scholar 

  • Hansen, J., Sato, M., and Ruedy, R., Radiative forcing and climate response, J. Geophys. Res.: Atmos., 1997, vol. 102, no. D6, pp. 6831–6864.

    Article  Google Scholar 

  • Hansen, J., Sato, M., Kharecha, P., and Schuckmann, K.V., Earth’s energy imbalance and implications, Atmos. Chem. Phys., 2011, vol. 11, no. 24, pp. 13421–13449.

    Article  Google Scholar 

  • Harris, R.N. and Chapman, D.S., Climate change on the Colorado Plateau of the Eastern Utah inferred from borehole temperatures, J. Geophys. Res., 1995, vol. 100, no. B4, pp. 6367–6381.

    Article  Google Scholar 

  • Harris, R.N. and Chapman, D.S., Borehole temperature and a baseline for 20th century global warming estimates, Science, 1997, vol. 275, pp. 1618–1621.

    Article  Google Scholar 

  • Huang, S., 1851–2004 annual heat budget of the continental landmasses, Geophys. Res. Lett., 2006, vol. 33, no. 4, p. L04707.

    Google Scholar 

  • Indermühle, A., Monnin, E., Stauffer, B., Stocker, T.F., and Wahlen, M., Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica, Geophys. Res. Lett., 1999a, vol. 27, pp. 735–738.

    Article  Google Scholar 

  • Indermühle, A., Stocker, T.F., Joos, F., Fischer, H., Smith, H.J., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R., and Stauffer, B., Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica, Nature, 1999b, vol. 398, pp. 121–126.

    Google Scholar 

  • Karl, T.R., Tarpey, J.D., Quayle, R.G., Diaz, H.F., Robinson, D.A., and Bradley, R.S., The recent climate record: What it can and cannot tells us, Rev. Geophys., 1989, vol. 27, pp. 405–430.

    Article  Google Scholar 

  • Lachenbruch, A.H. and Marshall, B.V., Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic, Science, 1986, vol. 234, pp. 689–696.

    Article  Google Scholar 

  • Lean, J., Beer, J., and Bradley, R., Reconstruction of solar irradiance since 1610: Implications for climate change, Geophys. Res. Lett., 1995, vol. 22, no. 23, pp. 3195–3198.

    Article  Google Scholar 

  • Levitus, S., Antonov, J., Wang, T., Delworth, L., Dixon, K., and Broccoli, A., Anthropogenic warming of the Earth’s climate system, Science, 2001, vol. 292, pp. 267–270.

    Article  Google Scholar 

  • Majorowicz, J., Scinner, W., and Safanda, J., Western Canadian sedimentary basin temperature–depth transients from repeated well logs: Evidence of recent decade subsurface heat gain due to climatic warming, J. Geophys. Eng., 2012, vol. 9, pp. 127–137.

    Article  Google Scholar 

  • Pedro, J.B., Rasmussen, S.O., and van Ommen, T.D., Tightened constraints on the time-lag between Antarctic temperature and CO2 during the last deglaciation, Clim. Past, 2012, vol. 8, pp. 1213–1221.

    Article  Google Scholar 

  • Peixóto, J.P. and Oort, A.H., Physics of climate, Rev. Mod. Phys., 1984, vol. 56, no. 3, p. 365.

    Article  Google Scholar 

  • Pielke, R.A., Sr., Heat storage within the Earth system, Bull. Am. Meteorol. Soc., 2003, vol. 84, no. 3, pp. 331–335.

    Article  Google Scholar 

  • Pollack, H.N., Huang, S., and Shen, P.Yu., Climate change record in subsurface temperatures: A global perspective, Science, 1998, vol. 282, pp. 279–281.

    Article  Google Scholar 

  • Pollack, H.N. and Huang, S., Climate reconstruction from subsurface temperatures, Ann. Rev. Earth Planet. Sci., 2000, vol. 28, pp. 339–365.

    Article  Google Scholar 

  • Pollack, H.N., Demezhko, D.Yu., Duchkov, A.D., Golovanova, I.V., Huang, S., Shchapov, V.A., and Smerdon, J.E., Surface temperature trends in Russia over the past five centuries reconstructed from borehole temperatures, J. Geophys. Res., 2003, vol. 108, no. B4, p. 2180.

    Article  Google Scholar 

  • Pollack, H.N. and Smerdon, J.E., Borehole climate reconstructions: Spatial structure and hemispheric averages, J. Geophys. Res., 2004, vol. 109, p. D11106.

    Article  Google Scholar 

  • Roe, G.H. and Baker, M.B., Why is climate sensitivity so unpredictable?, Science, 2007, vol. 318, no. 5850, pp. 629–632.

    Article  Google Scholar 

  • Servonnat, J., Yiou, P., Khodri, M., Swingedouw, D., and Denvil, S., Influence of solar variability, CO2 and orbital forcing between 1000 and 1850 AD in the IPSLCM4 model, Clim. Past, 2010, vol. 6, no. 4, pp. 445–460.

    Article  Google Scholar 

  • Shakun, J.D., Clark, P.U., He, F., Marcott, S.A., Mix, A.C., Liu, Z., Otto-Bliesner, B., Schmittner, A., and Bard, E., Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation, Nature, 2012, vol. 484, no. 7392, pp. 49–54.

    Article  Google Scholar 

  • Smith, H.J., Fischer, H., Mastroianni, D., Deck, B., and Wahlen, M., Dual modes of the carbon cycle since the Last Glacial Maximum, Nature, 1999, vol. 400, pp. 248–250.

    Article  Google Scholar 

  • Vasiliev, S.S. and Dergachev, V.A., The ~2400-year cycle in atmospheric radiocarbon concentration: Bispectrum of 14C data over the last 8000 years, Ann. Geophys., 2002, vol. 20, no. 1, pp. 115–120.

    Article  Google Scholar 

  • Volobuev, D.M., Central Antarctic climate response to the solar cycle, Clim. Dyn., 2013, pp. 1–7.

    Google Scholar 

  • Wang, J. and Bras, R.L., Ground heat flux estimated from surface soil temperature, J. Hydrol., 1999, vol. 216, nos. 3–4, pp. 214–226.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Demezhko.

Additional information

Original Russian Text © D.Yu. Demezhko, A.A. Gornostaeva, 2014, published in Geofizicheskie Protsessy i Biosfera, 2014, Vol. 13, No. 4, pp. 21–40.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demezhko, D.Y., Gornostaeva, A.A. Reconstructions of ground surface heat flux variations in the urals from geothermal and meteorological data. Izv. Atmos. Ocean. Phys. 51, 723–736 (2015). https://doi.org/10.1134/S0001433815070026

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433815070026

Keywords

Navigation