Skip to main content
Log in

Possible reasons for low climate-model sensitivity to increased carbon dioxide concentrations

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The sensitivities of two climate-model versions—INMCM4 which participated in the Coupled Model Intercomparison Project, Phase 5 (CMIP5), and a new INMCM5 version with increased vertical and horizontal resolutions in its atmospheric block—to the quadrupled concentration of CO2 are studied. When the CO2 concentration is quadrupled, the equilibrium increase in surface temperature amounts to about 4.2 K for INMCM4, which is lower than that for other models that participated in the CMIP5. When the CO2 concentration increases, the cloud radiative forcing in the model decreases; in this case, one portion of this decrease occurs during the first year after the concentration of CO2 is quadrupled and the other portion almost linearly depends on the value of global warming. The results of additional numerical experiments with the model show that a rapid decrease in cloud-radiative forcing results from variations in stratification in the atmospheric surface boundary layer and associated increased cloudiness. The portion of a linear decrease in cloud-radiative forcing with increased temperature is associated with an increase in the water content of model clouds at higher temperatures. The elimination of these two mechanisms allows one to increase the model sensitivity to the quadrupled concentration of CO2 up to 5.2 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Meehl, T. F. Stocker, W. D. Collins, P. Friedlingstain, A. Gaye, J. M. Gregory, A. Kitoh, R. Knutti, J. M. Murphy, A. Noda, S. Raper, I. Watterson, A. Weaver, Z. Zhao, et al., “Global climate projections,” in Climate Change 2007. The Physical Science Basis (Cambridge Univ. Press, Cambridge, 2007), pp. 748–845.

    Google Scholar 

  2. S. Bony, R. Colman, V. Kattsov, R. P. Allan, C. S. Bretherton, J. L. Dufresne, A. Hall, S. Hallegatte, M. M. Holland, W. Ingram, D. A. Randall, B. J. Soden, G. Tselioudis, and M. Webb, “How well do we understand and evaluate climate change feedback processes?,” J. Clim. 19(15), 3445–3482 (2006).

    Article  Google Scholar 

  3. E. M. Volodin, “Relation between temperature sensitivity to doubled carbon dioxide and the distribution of clouds in current climate models,” Izv., Atmos. Ocean. Phys. 44(3), 288–299 (2008).

    Article  Google Scholar 

  4. T. Andrews, J. M. Gregory, M. Webb, and K. Taylor, “Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models,” Geophys. Res. Lett. 39(9) (2012). doi: 10.1029/2012GL051607

    Google Scholar 

  5. E. M. Volodin, N. A. Dianskii, and A. V. Gusev, “Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations,” Izv., Atmos. Ocean. Phys. 46(4), 414–431 (2010).

    Article  Google Scholar 

  6. M. Tolstykh, R. Ibraev, E. Volodin, K. Ushakov, V. Kalmykov, A. Shlyaeva, V. Mizyak, and R. Khabeev, Global Models of the Atmosphere and World Ocean. Algorithms and Supercomputing Technologies (Moscow Univ., Moscow, 2013) [in Russian].

    Google Scholar 

  7. J. M. Gregory, W. J. Ingram, M. A. Palmer, G. S. Jones, P. A. Stott, R. B. Thore, J. A. Lowe, T. C. Johns, and K. D. Williams, “A new method for diagnosing radiative forcing and climate sensitivity,” Geophys. Res. Lett. 31(3) (2004). doi: 10.1029/2003GL018747

    Google Scholar 

  8. R. J. Stouffer and S. Manabe, “Response of a coupled ocean-atmosphere model to increasing atmosphere carbon dioxide: sensitivity to the rate of increase,” J. Clim. 12(8), 2224–2237 (1999).

    Article  Google Scholar 

  9. G. Danabasoglu and P. R. Gent, “Equilibrium climate sensitivity: Is it accurate to use slab ocean model?,” J. Clim. 22(9), 2494–2499 (2009).

    Article  Google Scholar 

  10. V. A. Alekseev, E. M. Volodin, V. Ya. Galin, V. P. Dymnikov, and V. N. Lykosov, Preprint no. 2086-B98 INM RAS (Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, 1998).

    Google Scholar 

  11. M. Watanabe, S. Emori, M. Satoh, and H. Miura, “A PDF-based hybrid prognostic cloud scheme for general circulation models,” Clim. Dyn. 33(6), 795–816 (2009).

    Article  Google Scholar 

  12. I. P. Mazin, “On the climatology and physical structure of clouds,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 30(3), 338–344 (1994).

    Google Scholar 

  13. E. M. Volodin and N. A. Dianskii, “Simulation of climate changes in the 20th–22nd centuries with a coupled atmosphere-ocean general circulation model,” Izv., Atmos. Ocean. Phys. 42(3), 267–281 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Volodin.

Additional information

Original Russian Text © E.M. Volodin, 2014, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2014, Vol. 50, No. 4, pp. 399–405.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodin, E.M. Possible reasons for low climate-model sensitivity to increased carbon dioxide concentrations. Izv. Atmos. Ocean. Phys. 50, 350–355 (2014). https://doi.org/10.1134/S0001433814040239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433814040239

Keywords

Navigation