Skip to main content
Log in

Carbon Fiber Anode of Biofuel Cell with Immobilized Bacteria and Membrane Fractions

  • NANOBIOLOGY
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Four types of carbon fiber materials (CFMs) obtained by electrospinning polyacrylonitrile solutions are considered. The CFMs intertwine with cells of Gluconobacter oxydans or with their membrane fractions (MFs). Bioelectrochemical characteristics of the electrodes (chrono- and voltamperometric, as well as impedance spectra) are studied. Electrodes are considered a model of the anode of the microbial biofuel cell (MFC). Ethyl alcohol is the oxidized substrate. MALDI-TOF MS demonstrates that MFs retain the protein structure of whole cells and therefore can be used as analogues of whole cells. It is shown that the MFC based on carbon fiber material obtained after 30-min treatment at 1000°C has the highest power and stability. When MFs are used as a biocatalyst, nonmediated charge transfer is observed for all studied CFMs. These results can be successfully used for the design of biosensors and MFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. B. Mathur, P. H. Maheshwari, T. L. Dhami, R. K. Sharma, and C. P. Sharma, “Processing of carbon composite paper as electrode for fuel cell,” J. Power Sources 161, 790–798 (2006).

    Article  Google Scholar 

  2. G. Moreno-Fernandez, J. Ibañez, J. M. Rojo, and M. Kunowsky, “Activated carbon fiber monoliths as supercapacitor electrodes,” Adv. Mater. Sci. Eng. 2017, 3625414 (2017).

    Article  Google Scholar 

  3. C. Minke, U. Kunz, and T. Turek, “Carbon felt and carbon fiber-a techno-economic assessment of felt electrodes for redox flow battery applications,” J. Power Sources 342, 116–124 (2017).

    Article  Google Scholar 

  4. Y. Yang, F. Simeon, T. A. Hatton, and G. C. Rutledge, “Polyacrylonitrile-based electrospun carbon paper for electrode applications,” J. Appl. Polym. Sci. 124, 3861–3870 (2012).

    Article  Google Scholar 

  5. H. Zheng, H. Xue, Y. Zhang, and Z. Shen, “A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earth catalyst,” Biosens. Bioelectron. 17, 541–545 (2002).

    Article  Google Scholar 

  6. A. S. Campbell, M. V. Jose, S. Marx, S. Cornelius, R. R. Koepsel, M. F. Islam, and A. J. Russell, “Improved power density of an enzymatic biofuel cell with fibrous supports of high curvature,” RSC Adv. 6, 10150–10158 (2016).

    Article  Google Scholar 

  7. T. K. Tenchurin, A. N. Reshetilov, Yu. V. Plekhanova, S. E. Tarasov, A. G. Bykov, M. A. Gutorov, S. V. Alferov, S. N. Chvalun, A. S. Orekhov, A. D. Shepelev, P. M. Gotovtsev, and R. G. Vasilov, “Carbon superfine materials as a promising material for Gluconobacter oxydans based microbial fuel cells,” IOP Conf. Ser.: Earth Environ. Sci. 121, 022005 (2018).

  8. Ya. Q. Wang, H.-X. Huang, B. Li, and W.-Sh. Li, “Novelly developed three-dimensional carbon scaffold anodes from polyacrylonitrile for microbial fuel cells,” J. Mater. Chem. A 3, 5110–5118 (2015).

    Article  Google Scholar 

  9. M. R. Khan, E. Baranitharan, and D. M. R. Prasad, “Treatment of palm oil mill effluent in microbial fuel cell using polyacrylonitrile carbon felt as electrode,” J. Med. Bioeng. 2, 252–256 (2013).

    Google Scholar 

  10. P. Heikkila and A. Harlin, “Parameter study of electrospinning of polyamide-6,” Eur. Polym. J. 44, 3067–3079 (2008).

    Article  Google Scholar 

  11. G. C. Rutledge and S. V. Fridrikh, “Formation of fibers by electrospinning,” Adv. Drug. Deliv. Rev. 59, 1384–1391 (2007).

    Article  Google Scholar 

  12. P. K. Bhattacharjee and G. C. Rutledge, “Electrospinning and polymer nanofibers: process fundamentals,” in Comprehensive Biomaterials, Ed. by P. Ducheyne, K. E. Healy, D. W. Hutmacher, D. Grainger, and C. J. Kirkpatrick (Elsevier, Amsterdam Netherlands, 2011), Vol. 1, pp. 497–512.

    Google Scholar 

  13. A. E. Franks and K. P. Nevin, “Microbial fuel cells, a current review,” Energies 3, 899–919 (2010).

    Article  Google Scholar 

  14. B. E. Logan and K. Rabaey, “Conversion of wastes into bioelectricity and chemicals using microbial electrochemical technologies,” Science (Washington, D.C.) 337 (6095), 686–690 (2012).

    Article  Google Scholar 

  15. T. Bertok, J. Filip, and J. Tkáč, “Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells,” Chem. Pap. 69, 27–41 (2015).

    Google Scholar 

  16. A. N. Reshetilov, J. V. Plekhanova, S. E. Tarasov, A. G. Bykov, M. A. Gutorov, S.V. Alferov, T. K. Tenchurin, S. N. Chvalun, A. S. Orekhov, A. D. Shepelev, P. M. Gotovtsev, and R. G. Vasilov, “Evaluation properties of bioelectrodes based on carbon superfine materials containing model microorganisms Gluconobacter,” Nanotechnol. Russ. 12, 107–115 (2017).

    Article  Google Scholar 

  17. E. Indzhgiya, O. N. Ponamoreva, V. A. Alferov, N. A. Reshetilov, and G. Lo, “Interaction of ferrocene mediators with Gluconobacter oxydans immobilized whole cells and membrane fractions in oxidation of ethanol,” Electroanalysis 24, 924–930 (2012).

    Article  Google Scholar 

  18. A. N. Reshetilov, A. E. Kitova, V. V. Kolesov, and A. I. Yaropolov, “Mediator-free bioelectrocatalytic oxidation of ethanol on an electrode from thermally expanded graphite modified by Gluconobacter oxydans membrane fractions,” Electroanalysis 27, 1443–1448 (2015).

    Article  Google Scholar 

  19. S. V. Alferov, S. V. Vozchikova, V. A. Arlyapov, V. A. Alferov, and A. N. Reshetilov, “Competition between redox mediator and oxygen in the microbial fuel cell,” Appl. Biochem. Microbiol. 53, 267–272 (2017).

    Article  Google Scholar 

  20. E. A. Dubova, N. M. Bol’bit, and V. R. Duflot, “The effect of the synthesis method on the microstructure of the chains and the rheology of solutions of polyacrylonitrile,” Estestv. Tekh. Nauki 49 (4), 54–57 (2010).

    Google Scholar 

  21. A. N. Reshetilov, Yu. V. Plekhanova, S. E. Tarasov, V. A. Arlyapov, V. V. Kolesov, M. A. Gutorov, P. M. Gotovtsev, and R. G. Vasilov, “Effect of some carbon nanomaterials on ethanol oxidation by Gluconobacter oxydans bacterial cells,” Appl. Biochem. Microbiol. 53, 123–129 (2017).

    Article  Google Scholar 

  22. X. Wang, H. Gu, F. Yin, and Y. Tu, “A glucose biosensor based on prussian blue/chitosan hybrid film,” Biosens. Bioelectron. 24, 1527–1530 (2009).

    Article  Google Scholar 

  23. B. E. Logan and J. M. Regan, “Microbial fuel cells-challenges and applications,” Environ. Sci. Technol. 40, 5172–5180 (2008).

    Article  Google Scholar 

  24. S. Kumar and S. K. Acharya, “2,6-dichloro-phenol indophenol prevents switch-over of electrons between the cyanide-sensitive and insensitive pathway of the mitochondrial electron transport chain in the presence of inhibitors,” Anal. Biochem. 268, 89–93 (1999).

    Article  Google Scholar 

  25. P. Das, M. Das, S. R. Chinnadayyala, I. M. Singha, and P. Goswami, “Recent advances on developing 3rd generation enzyme electrode for biosensor applications,” Biosens. Bioelectron. 79, 386–397 (2016).

    Article  Google Scholar 

  26. M. Falk, Z. Blum, and S. Shleev, “Direct electron transfer based enzymatic fuel cells,” Electrochim. Acta 82, 191–202 (2012).

    Article  Google Scholar 

  27. Mustakeem, “Electrode materials for microbial fuel cells: nanomaterial approach,” Mater. Renewable Sustainable Energy 4, 22 (2015). doi 10.1007/s40243-015-0063-8

  28. S. Koide, T. Sasaki, R. Sano, H. Mogi, Y. Fukushi, and Y. Nishioka, “Flexible biofuel cell with electrodes modified by glucose oxidase ferrocene and bilirubin oxidase fabricated using microfabrication processes,” J. Chin. Adv. Mater. Soc. 2, 159–170 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 15-29-01292 OFI_M_2015, as well as by Presidential grant of the Russian Federation no. MK-6700.2018.3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Plekhanova or A. N. Reshetilov.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plekhanova, Y.V., Tarasov, S.E., Bykov, A.G. et al. Carbon Fiber Anode of Biofuel Cell with Immobilized Bacteria and Membrane Fractions. Nanotechnol Russia 13, 531–538 (2018). https://doi.org/10.1134/S1995078018050117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018050117

Navigation