Skip to main content
Log in

Synthesis and Photophysical Properties of Multichromic Nanocrystals of Polymethine Dyes

  • Nanobiology
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A unique method for the self-assembly of multilayer multichromic molecular crystals from three various polymethine dyes absorbing light in the broad spectral range has been developed. This method is based on the formation of an anionic platform of J-aggregates of magnesium complexes of thiamonomethinecyanines in an aqueous solution followed by the matrix synthesis of J-aggregates of two cationic trimethinecyanines on the surface of the platform. Spectral, luminescent, and photoelectric properties of the multichromic crystals of dyes have been studied. It has been shown that each multichromic organic crystal is a multilayer photoelement which possesses photoconductivity in three maxima of exciton absorption in the blue, green, and red spectral ranges with efficiency from 2.7 to 6.1%. The results form the basis for the technological development of high-organized molecular structures possessing unique optical and photoelectric properties with the aim of applying them in organic and hybrid organic/inorganic photonics and optoelectronics, including in the form of thin-film photoconverters in broad spectral ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J-Aggregates, Ed. by T. Kobayashi (World Scientific, Hong Kong, Singapore, New Jersey, London, 1996).

    Google Scholar 

  2. B. I. Shapiro, “Molecular assemblies of polymethine dyes,” Russ. Chem. Rev. 75, 433–456 (2006).

    Article  Google Scholar 

  3. F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye material,” Angew. Chem., Int. Ed. Engl. 50, 3376–3410 (2011).

    Article  Google Scholar 

  4. T. James, The Theory of Photographic Process (Macmillan, New York, 1966).

    Google Scholar 

  5. B. I. Shapiro, Theoretical Fundamentals of Photographic Process (Editorial URSS, Moscow, 2000) [in Russian].

    Google Scholar 

  6. N. Kometani, M. Tsubonishi, T. Fujita, K. Asami, and Y. Yonezawa, “Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal nanoparticles in aqueous solutions and in alternate assemblies,” Langmuir 17, 578–580 (2001).

    Article  Google Scholar 

  7. G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, “Ultrafast hybrid plasmonics,” Chem. Phys. Lett. 461, 171–179 (2008).

    Article  Google Scholar 

  8. V. S. Lebedev, A. G. Vitukhnovsky, A. Yoshida, N. Kometani, and Y. Yonezawa, “Absorption properties of the composite silver/dye nanoparticles in colloidal solutions,” Colloids Surf., A 326, 204–209 (2008).

    Article  Google Scholar 

  9. V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovskii, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).

    Article  Google Scholar 

  10. B. I. Shapiro, E. S. Koltsova, A. G. Vitukhnovskii, D. A. Chubich, A. I. Tolmachev, and Y. L. Slominskii, “Interaction between gold nanoparticle plasmons and aggregates of polymethine dyes: ‘invisible’ nanoparticles,” Nanotechnol. Russ. 6, 456–462 (2011).

    Article  Google Scholar 

  11. A. Vujačić, V. Vasić, M. Dramićanin, S. Sovilj, N. Bibić, J. Hranisavljevic, and G. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).

    Google Scholar 

  12. G. Wiederrecht, G. Wurtz, and J. Hranisavljevic, “J-aggregates on metal nanoparticles characterized through ultrafast spectroscopy and near-field optics,” Scanning 26 (5), 2–9 (2004).

    Google Scholar 

  13. V. S. Lebedev and A. S. Medvedev, “Plasmon–exciton coupling effects in light absorption and scattering by metal/J-aggregate bilayer nanoparticles,” Quantum Electro. 42, 701–713 (2012).

    Article  Google Scholar 

  14. V. S. Lebedev and A. S. Medvedev, “Absorption and scattering of light by hybrid metal/J-aggregate nanoparticles: plasmon-exciton coupling and size effects,” J. Russ. Laser Res. 34, 303–322 (2013).

    Article  Google Scholar 

  15. T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon-exciton interactions in a core-shell geometry: from enhanced absorption to strong coupling,” ACS Photon. 1, 454–463 (2014).

    Article  Google Scholar 

  16. A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye J-aggregates,” J. Phys. Chem. C 114, 2867–2872 (2010).

    Article  Google Scholar 

  17. V. S. Lebedev and A. S. Medvedev, “Optical properties of three-layer metal-organic nanoparticles with a molecular J-aggregate shell,” Quantum Electron. 43, 1065–1077 (2013).

    Article  Google Scholar 

  18. D. Gülen, “A numerical spectroscopic investigation on the functionality of molecular excitons in tuning the plasmonic splitting observed in core/shell hybrid nanostructures,” J. Phys. Chem. C 114, 13825–13831 (2010).

    Article  Google Scholar 

  19. A. D. Kondorskiy, K. S. Kislov, N. T. Lam, and V. S. Lebedev, “Absorption of light by hybrid metalorganic nanostructures of elongated shape,” J. Russ. Laser Res. 36, 175–192 (2015).

    Article  Google Scholar 

  20. A. Yoshida, N. Uchida, and N. Kometani, “Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers,” Langmuir 25, 11802–11807 (2009).

    Article  Google Scholar 

  21. W. Ni, T. Ambjornsson, S. P. Apell, H. Chen, and J. Wang, “Observing plasmonic-molecular resonance coupling on single gold nanorods,” Nano Lett. 10, 77–84 (2010).

    Article  Google Scholar 

  22. G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Nat. Sci. Rep. 3, 3074 (2013).

    Article  Google Scholar 

  23. D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon-exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134–140 (2013).

    Article  Google Scholar 

  24. B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskii, and V. S. Lebedev, “Light absorption and plasmon–exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J-and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015).

    Article  Google Scholar 

  25. T. D. Slavnova, A. K. Chibisov, and H. Gorner, “Kinetics of salt-induced J-aggregation of cyanine dyes,” J. Phys. Chem. A 109, 4758–4765 (2005).

    Article  Google Scholar 

  26. B. I. Shapiro, E. A. Belonozhkina, O. A. Tyapina, and V. A. Kuz’min, “Influence of multicharged inorganic and organic cations on J-aggregation of polymethine dyes,” Nanotechnol. Russ. 5, 58–66 (2010).

    Article  Google Scholar 

  27. B. I. Shapiro, “Block building of polymethine dye aggregates,” Nanotechnol. Russ. 3, 139–150 (2008).

    Article  Google Scholar 

  28. A. D. Nekrasov and B. I. Shapiro, “Effect of multiply charged paramagnetic metal cations on J-aggregation of thiacyanine dyes,” High Energy Chem. 45, 133–139 (2011).

    Article  Google Scholar 

  29. B. I. Shapiro, E. A. Satalkina, and A. D. Nekrasov, “Matrix synthesis of multilayer aggregates of polymethine dyes,” Nanotechnol. Russ. 9, 356–362 (2014).

    Article  Google Scholar 

  30. B. I. Shapiro and E. V. Manulik, “Multichromic J-aggregates of cyanine dyes for visible and IR range of spectrum,” Nanotechnol. Russ. 11, 273–279 (2016).

    Article  Google Scholar 

  31. N. A. Davidenko, A. A. Ishchenko, and V. A. Pavlov, “Features of photogeneration of charge carriers in films of amorphous molecular semiconductors doped with squarly dye,” Zh. Nauch. Prikl. Fotogr. 44 (2), 52–56 (1999).

    Google Scholar 

  32. N. Kometani, H. Nakajima, K. Asami, Y. Yonezawa, I. G. Scheblykin, and A. G. Vitukhnovsky, “Luminescence properties of the J-aggregate of cyanine dyes in multilayer assemblies,” J. Lumin. 87–89, 770–772 (2000).

    Article  Google Scholar 

  33. A. V. Sorokin, N. V. Pereverzev, I. I. Grankina, S. L. Yefimova, and Yu. V. Malyukin, “Evidence of exciton self-trapping in pseudoisocyanine J-aggregates formed in layered polymer films,” J. Phys. Chem. C 119, 27865–27873 (2015).

    Article  Google Scholar 

  34. S. L. Yefimova, A. V. Sorokin, I. K. Katrunov, and Yu. V. Malyukin, “Excitation localization effects in nanoscale molecular clusters (J-aggregates),” Low Temp. Phys. 32, 157–162 (2011).

    Article  Google Scholar 

  35. J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 01200 (2017).

    Article  Google Scholar 

  36. O. P. Dimitriev, Y. P. Piryatinski, and Y. L. Slominskii, “Excimer emission in J-aggregates,” J. Phys. Chem. Lett. 9, 2138–2143 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Shapiro.

Additional information

Original Russian Text © B.I. Shapiro, A.D. Nekrasov, V.S. Krivobok, E.V. Manulik, V.S. Lebedev, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapiro, B.I., Nekrasov, A.D., Krivobok, V.S. et al. Synthesis and Photophysical Properties of Multichromic Nanocrystals of Polymethine Dyes. Nanotechnol Russia 13, 281–289 (2018). https://doi.org/10.1134/S1995078018030151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018030151

Navigation