Skip to main content
Log in

Structure and reactivity of mechanoactivated Mg (Al)/MoO3 nanocomposites

  • Chemical Physics of Nanomaterials
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

X-ray diffraction and thermal analyses, microscopy, and specific surface area measurements are used to study the formation, structure, and reactivity of mechanoactivated Mg/MoO3 and Al/MoO3 nanocomposites during slow heating (10°C/min). The optimal mechanoactivation dose is determined. The mechanoactivated Mg/MoO3 composite is a dense mixture of two nanosized components with a contact surface of ~8 m2/g (upper estimate). The area of the contact surface between the components of the Al/MoO3 composite is less than 2 m2/g, with the sample consisting of micron-sized aluminum flakes coated with nanoparticles oxide nanoparticles. When heated, the Mg/MoO3 system explodes, with the temperature of explosion being determined by the heating conditions. The minimum temperature of conversion is ~250°C, close to the temperature of autoignition of fuel–air mixtures promoted by these additives. The Al/MoO3 system is characterized by a phased progress of the reaction in the temperature range of 200 to 1000°C. The reasons for the differences in the reactivity of the mixtures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Yu. Dolgoborodov, M. F. Gogulya, M. N. Makhov, I. V. Kolbanev, and A. N. Streletskii, in Proceedings of the 29th International Pyrotechnik Seminar IP-SUSA (2002), p.557.

    Google Scholar 

  2. A. Yu. Dolgoborodov, M. N. Makhov, I. V. Kolbanev, and A. N. Streletskii, RF Patent No. 2235085, Byull. Izobret. No. 24 (2004).

    Google Scholar 

  3. A. Yu. Dolgoborodov, M. N. Makhov, A. N. Streletskii, I. V. Kolbanev, M. F. Gogulya, and V. E. Fortov, Khim. Fiz. 23 (9), 85 (2004).

    Google Scholar 

  4. A. Yu. Dolgoborodov, M. N. Makhov, I. V. Kolbanev, A. N. Streletskii, and V. E. Fortov, JETP Lett. 81, 311 (2005).

    Article  CAS  Google Scholar 

  5. A. N. Streletskii, I. V. Kolbanev, V. A. Teselkin, A. V. Leonov, S. N. Mudretsova, M. V. Sivak, and A. Yu. Dolgoborodov, Russ. J. Phys. Chem. B 9, 148 (2015).

    Article  CAS  Google Scholar 

  6. A. N. Streletskii, I. V. Kolbanev, A. V. Leonov, A. Yu. Dolgoborodov, G. A. Vorob’eva, M. V. Sivak, and D. G. Permenov, Colloid. J. 77, 213 (2015).

    Article  CAS  Google Scholar 

  7. M. V. Sivak, A. N. Streletskii, I. V. Kolbanev, A. V. Leonov, E. N. Degtyarev, and D. G. Permenov, Colloid. J. 77, 333 (2015).

    Article  CAS  Google Scholar 

  8. M. Schoenitz, T. Ward, and E. L. Dreizin, Mater. Res. Soc. Proc. 800, AA2.6.1 (2004).

  9. E. L. Dreizin and M. Schoenitz, US Patent No. 7524355 B2 (2009).

    Google Scholar 

  10. M. Schoenitz, T. S. Ward, and E. L. Dreizin, Proc. Combust. Inst. 30, 2071 (2005).

    Article  Google Scholar 

  11. S. M. Umbrajkar, R. Broad, M. A. Trunov, et al., Propellants, Explos., Pyrotech. 32, 32 (2007).

    Article  CAS  Google Scholar 

  12. S. M. Umbrajkar, S. Seshadri, M. Schoenit, et al., J. Propuls. Power 24, 192 (2008).

    Article  CAS  Google Scholar 

  13. D. Stamatis, E. L. Dreizin, and K. Higa, J. Propuls. Power 27, 1079 (2011).

    Article  CAS  Google Scholar 

  14. S. Zhang, M. Schoenitz, and E. L. Dreizin, J. Phys. Chem. C 114, 19653 (2010).

    Article  CAS  Google Scholar 

  15. Y. Wang, W. Jiang, X. Zhang, et al., Thermochim. Acta 512, 233 (2011).

    Article  CAS  Google Scholar 

  16. Y. Wang, W. Jiang, L. Liang, et al., Rare Metal Mat. Eng. 41, 9 (2012).

    Article  Google Scholar 

  17. M. A. Korchagin, T. F. Grigor’eva, B. B. Bokhonov, et al., Fiz. Goreniya Vzryva 39 (1), 60 (2003).

    CAS  Google Scholar 

  18. M. A. Korchagin, T. F. Grigor’eva, A. P. Barinova, and N. Z. Lyakhov, Int. J. Self-Propag. High-Temp. Synth. 9, 307 (2000).

    CAS  Google Scholar 

  19. A. S. Rogachev, N. F. Shkodich, S. G. Vadchenko, et al., Int. J. Self-Propag. High-Temp. Synth. 22 (4), 210 (2013).

    Article  CAS  Google Scholar 

  20. N. Z. Lyakhov, T. L. Talako, and T. F. Grigor’eva, Effect of Mechanoactivation on the Processes of Phase and Structure Formation Processes in Self-Propagating High-Temperature Synthesis (Parallel’, Novosibirsk, 2008) [in Russian].

    Google Scholar 

  21. P. Balash, M. Achimovicova, M. Balash, et al., Chem. Soc. Rev. 42, 7571 (2013).

    Article  Google Scholar 

  22. E. L. Dreizin, Prog. Energy Combust. Sci. 35, 141 (2009).

    Article  CAS  Google Scholar 

  23. A. Yu. Dolgoborodov, Combust. Explos., Shock Waves 51, 86 (2015).

    Article  Google Scholar 

  24. K. Ya. Troshin, A. N. Streletskii, I. V. Kolbanev, A. A. Borisov, S. M. Frolov, and F. S. Frolov, Khim. Fiz. 35 (5) (2016).

    Google Scholar 

  25. A. N. Streletskii, in Proceedings of the 2nd International Conference on Structural Applications of Mechanical Alloying, Ed. by J. J. de Barbadillo et al. (ASM International, Materials Park, Ohio, 1993), p.51.

  26. E. V. Shelekhov and T. A. Sviridova, Metalloved. Term. Obrab. Met. 42 (8), 309 (2000).

    CAS  Google Scholar 

  27. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  28. Terms of Protection against Static Electricity NPAOP 0.01-1.29-97. www.ohranatruda.in.ua

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Streletskii.

Additional information

Original Russian Text © A.N. Streletskii, I.V. Kolbanev, K.Ya. Troshin, A.A. Borisov, A.V. Leonov, S.N. Mudretsova, V.V. Artemov, A.Yu. Dolgoborodov, 2016, published in Khimicheskaya Fizika, 2016, Vol. 35, No. 7, pp. 79–91.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Streletskii, A.N., Kolbanev, I.V., Troshin, K.Y. et al. Structure and reactivity of mechanoactivated Mg (Al)/MoO3 nanocomposites. Russ. J. Phys. Chem. B 10, 707–718 (2016). https://doi.org/10.1134/S1990793116040114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116040114

Keywords

Navigation