Skip to main content
Log in

A New Proof of the Existence of Embedded Surfaces with Anosov Geodesic Flow

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We give a new proof of the existence of compact surfaces embedded in ℝ3 with Anosov geodesic flows. This proof starts with a noncompact model surface whose geodesic flow is shown to be Anosov using a uniformly strictly invariant cone condition. Using a sequence of explicit maps based on the standard torus embedding, we produce compact embedded surfaces that can be seen as small perturbations of the Anosov model system and hence are themselves Anosov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anosov, D.V., Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature, Proc. Steklov Inst. Math., 1967, vol. 90, pp. 1–235; see also: Tr. Mat. Inst. Steklova, 1967, vol. 90, pp. 3–210.

    MathSciNet  Google Scholar 

  2. Dolgopyat, D., On Decay of Correlations in Anosov Flows, Ann. of Math. (2), 1998, vol. 147, no. 2, pp. 357–390.

    Article  MathSciNet  MATH  Google Scholar 

  3. Donnay, V. J. and Pugh, Ch., Finite Horizon Riemann Structures and Ergodicity, Ergodic Theory Dynam. Systems, 2004, vol. 24, no. 1, pp. 89–106.

    Article  MathSciNet  MATH  Google Scholar 

  4. Donnay, V. J. and Pugh, Ch., Anosov Geodesic Flows for Embedded Surfaces, in Geometric Methods in Dynamics: 2, W. de Melo, M.Viana, J.-Ch.Yoccoz (Eds.), Astérisque, vol. 287, Paris: Soc. Math. France, 2003, pp. 61–69.

    Google Scholar 

  5. Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., vol. 54, Cambridge: Cambridge Univ. Press, 1995.

    Book  MATH  Google Scholar 

  6. Klingenberg, W., Riemannian Manifolds with Geodesic Flow of Anosov Type, Ann. of Math. (2), 1974, vol. 99, pp. 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kourganoff, M., Embedded Surfaces with Anosov Geodesic Flows, Approximating Spherical Billiards, arXiv: 1612.05430 (2016).

    MATH  Google Scholar 

  8. Kourganoff, M., Uniform hyperbolicity in nonflat billiards, Discrete Cont. Dyn.-A, 2018, vol. 38, no. 3, pp. 1145–1160.

    Article  MathSciNet  MATH  Google Scholar 

  9. Liverani, C., On Contact Anosov Flows, Ann. of Math. (2), 2004, vol. 159, no. 3, pp. 1275–1312.

    Article  MathSciNet  MATH  Google Scholar 

  10. Mañé, R., On a Theorem of Klingenberg, in Dynamical Systems and Bifurcation Theory (Rio de Janeiro, 1985), Pitman Res. Notes Math. Ser., vol. 160, Harlow: Longman Sci. Tech., 1987, pp. 319–345.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Donnay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donnay, V., Visscher, D. A New Proof of the Existence of Embedded Surfaces with Anosov Geodesic Flow. Regul. Chaot. Dyn. 23, 685–694 (2018). https://doi.org/10.1134/S1560354718060047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354718060047

Keywords

MSC2010 numbers

Navigation