Skip to main content
Log in

Two-Step Electrodialysis Treatment of Monoethanolamine to Remove Heat Stable Salts

  • Processes and Equipment of Chemical Industry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Electrodialysis technology was adapted to removal of heat stable salts from aqueous solutions of alkanolamine absorbents, with monoethanolamine as example. Removal of anions of heat stable salts by electrodialysis from a 30 wt % aqueous solution of monoethanolamine with the degree of carbonation of 0.2 mol of CO2 per mole of monoethanolamine was studied. The two-step removal of heat stable salts by electrodialysis allows the monoethanolamine loss to be reduced and the concentration of residual CO2 in the absorbent solution to be decreased. The suggested two-step electrodialysis treatment scheme allows the concentration of heat stable salts to be maintained on the required level from the viewpoint of their corrosion activity, the total volume of the concentrate to be decreased by 50%, and the monoethanolamine loss to be decreased by 30%. The treatment unit with the circulation volume of the monoethanol absorbent of 100 m3 h–1 was calculated for confirming the efficiency of the two-step electrodialysis treatment scheme. As compared to the one-step electrodialysis treatment scheme, the two-step scheme ensures recovery of 50% of monoethanolamine at the same efficiency of the removal of heat stable salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Radman, R., Aouissi, A., Al Kahtani, A., and Mekhamer, W., Petrol. Chem., 2017, vol. 57, no. 1, pp. 79–84.

    Article  CAS  Google Scholar 

  2. Krylov, O.V. and Mamedov, A.Kh., Russ. Chem. Rev., 1995, vol. 64, no. 9, pp. 877–900.

    Article  Google Scholar 

  3. Gerzeliev, I.M., Usachev, N.Ya., Popov, A.Yu., and Khadzhiev, S.N., Petrol. Chem., 2011, vol. 51, no. 6, pp. 411–417.

    Article  CAS  Google Scholar 

  4. Kargari, A. and Ravanchi, M.T., Greenhouse Gases—Capturing, Utilization, and Reduction, Liu, G., Ed., New York: InTech, 2012, pp. 3–30.

  5. Carbon Dioxide Recovery and Utilization, Aresta, M., Ed., Luxemburg: Springer, 2013.

  6. Pisarenko, E.V., Pisarenko, V.N., Abaskuliev, D.A., and Minigulov, R.M., Theor. Found. Chem. Eng., 2008, vol. 42, no. 1, pp. 12–18.

    Article  CAS  Google Scholar 

  7. Solov’ev, S.A., Zatelepa, R.N., Gubaren, E.V., et al., Russ. J. Appl. Chem., 2007, vol. 80, no. 11, pp. 1883–1887.

    Article  CAS  Google Scholar 

  8. Lyadov, A.S. and Khadzhiev, S.N., Russ. J. Appl. Chem., 2017, vol. 90, no. 11, pp. 1727–1737.

    Article  CAS  Google Scholar 

  9. Kumeeva, T.Y., Prorokova, N.P., Kholodkov, I.V., et al., Russ. J. Appl. Chem., 2012, vol. 85, no. 1, pp. 144–149.

    Article  CAS  Google Scholar 

  10. Sovizi, M.R. and Dehghani, H., Russ. J. Appl. Chem., 2016, vol. 89, no. 12, pp. 2084–2090.

    Article  CAS  Google Scholar 

  11. International Energy Agency Statistics. CO2 Emissions from Fuel Combustion—Highlights, Paris: IEA, 2015.

  12. http://so-ups.ru/index.php?id=ees (visited Febr. 13, 2018).

  13. Liang, Z.H., Rongwong, W., Liu, H., et al., Int. J. Greenhouse Gas Contr., 2015, vol. 40, pp. 26–54.

    Article  CAS  Google Scholar 

  14. Ben-Mansour, R., Habib, M.A., Bamidele, O.E., et al., Appl. Energy, 2016, vol. 161, pp. 225–255.

    Article  CAS  Google Scholar 

  15. Naletov, V.A., Lukyanov, V.L., Kulov, N.N., et al., Theor. Found. Chem. Eng., 2014, vol. 48, no. 3, pp. 312–319.

    Article  CAS  Google Scholar 

  16. White, L.S., Wei, X., Pande, S., et al., J. Membr. Sci., 2015, vol. 496, pp. 48–57.

    Article  CAS  Google Scholar 

  17. Bazhenov, S.D. and Lyubimova, E.S., Petr. Chem., 2016, vol. 56, no. 10, pp. 889–914.

    Article  CAS  Google Scholar 

  18. Wang, M., Joel, A.S., Ramshaw, C., et al., Appl. Energy, 2015, vol. 158, pp. 275–291.

    Article  CAS  Google Scholar 

  19. Rochelle, G.T., Science, 2009, vol. 325, no. 5948, pp. 1652–1654.

    Article  CAS  PubMed  Google Scholar 

  20. Vakk, E.G., Shuklin, G.V., and Leites, I.L., Poluchenie tekhnologicheskogo gaza dlya proizvodstva ammiaka, metanola, vodoroda i vysshikh uglevodorodov (Preparation of Process Gas for Production of Ammonia, Methanol, Hydrogen, and Higher Hydrocarbons), Moscow, 2011.

    Google Scholar 

  21. Gouedard, C., Picq, D., Launay, F., and Carrette, P.L., Int. J. Greenhouse Gas Contr., 2012, vol. 10, pp. 244–270.

    Article  CAS  Google Scholar 

  22. Verma, N. and Verma, A., Fuel Process. Technol., 2009, vol. 90, no. 4, pp. 483–489.

    Article  CAS  Google Scholar 

  23. Rao, A.B. and Rubin, E.S., ES&T, 2002, vol. 36, pp. 4467–4475.

    Article  CAS  Google Scholar 

  24. RF Patent 2487113, Publ. 2013.

  25. ElMoudir, W., Supap, T., Saiwan, C., et al., Carbon Manag., 2012, vol. 3, no. 5, pp. 485–509.

    Article  CAS  Google Scholar 

  26. Wang, T., Hovland, J., and Jens, K.J., J. Environ. Sci., 2015, vol. 27, pp. 276–289.

    Article  Google Scholar 

  27. Volkov, A., Vasilevsky, V., Bazhenov, S., et al., Energy Proc., 2014, vol. 51, pp. 148–153.

    Article  CAS  Google Scholar 

  28. Strathmann, H., Desalination, 2010, vol. 264, no. 3, pp. 268–288.

    Article  CAS  Google Scholar 

  29. Dumée, L., Scholes, C., Stevens, G., and Kentish, S., Int. J. Greenhouse Gas Contr., 2012, vol. 10, pp. 443–455.

    Article  CAS  Google Scholar 

  30. Lim, J., Aguiar, A., Scholes, C.A., et al., Ind. Eng. Chem. Res., 2014, vol. 53, no. 49, pp. 19313–19321.

    Article  CAS  Google Scholar 

  31. Lim, J., Aguiar, A., Reynolds, A., et al., Int. J. Greenhouse Gas Contr., 2015, vol. 42, pp. 545–553.

    Article  CAS  Google Scholar 

  32. Bazhenov, S., Vasilevsky, V., Rieder, A., et al., Energy Proc., 2014, vol. 63, pp. 6349–6356.

    Article  CAS  Google Scholar 

  33. Bazhenov, S., Rieder, A., Schallert, B., et al., Int. J. Greenhouse Gas Contr., 2015, vol. 42, pp. 593–601.

    Article  CAS  Google Scholar 

  34. Zabolotskii, V.I., Gnusin, N.P., Pis’menskii, V.F., et al., Zh. Prikl. Khim., 1982, vol. 55, no. 5, pp. 1105–1110.

    CAS  Google Scholar 

  35. Zabolotskii, V.I., Gnusin, N.P., El’nikova, L.F., and Omel’chemko, Yu.N., Zh. Prikl. Khim., 1985, vol. 58, no. 10, pp. 2396–2399.

    CAS  Google Scholar 

  36. Zabolotskii, V., Sheldeshov, N., and Melnikov, S., Desalination, 2014, vol. 342, pp. 183–203.

    Article  CAS  Google Scholar 

  37. Novitskii, E.G., Vasilevskii, V.P., Grushevenko, E.A., et al., Russ. J. Electrochem., 2017, vol. 53, no. 4, pp. 391–397.

    Article  CAS  Google Scholar 

  38. Novitsky, E.G., Vasilevsky, V.P., Bazhenov, S.D., et al., Petrol. Chem., 2014, vol. 54, no. 8, pp. 680–685.

    Article  CAS  Google Scholar 

  39. Zagorodny, A.A., Ion Exchange Materials. Properties and Applications, Oxford: Elsevier, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Grushevenko.

Additional information

Original Russian Text © E.A. Grushevenko, S.D. Bazhenov, V.P. Vasilevskii, E.G. Novitskii, A.V. Volkov, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 4, pp. 533−541.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grushevenko, E.A., Bazhenov, S.D., Vasilevskii, V.P. et al. Two-Step Electrodialysis Treatment of Monoethanolamine to Remove Heat Stable Salts. Russ J Appl Chem 91, 602–610 (2018). https://doi.org/10.1134/S1070427218040110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218040110

Navigation